×

Gradient estimates for the elliptic and parabolic Lichnerowicz equations on compact manifolds. (English) Zbl 1223.58013

Summary: Let \((M, g)\) be a smooth compact Riemannian manifold of dimension \(n \geq 3\). Denote by \({\Delta_g=-\mathrm {div}_g\nabla}\) the Laplace-Beltrami operator.
We establish some local gradient estimates for the positive solutions of the Lichnerowicz equation
\[ \Delta_g u(x)+h(x)u(x)=A(x)u^p(x)+\frac{B(x)}{u^q(x)} \]
on \((M, g)\). Here, \(p, q \geq 0\), \(A\), \(B\) and \(h\) are smooth functions on \((M, g)\). We also derive the Harnack differential inequality for the positive solutions of
\[ u_t(x,t)+\Delta_gu(x,t)+h(x)u(x,t)=A(x)u^p(x,t)+\frac{B(x)}{u^q(x,t)} \]
on \((M, g)\) with initial data \(u(x, 0) > 0\).

MSC:

58J05 Elliptic equations on manifolds, general theory
35B09 Positive solutions to PDEs
35L05 Wave equation
58J35 Heat and other parabolic equation methods for PDEs on manifolds
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
35K05 Heat equation
Full Text: DOI

References:

[1] Aubin T.: Nonlinear Analysis on Manifolds. Springer, New York (1982) · Zbl 0512.53044
[2] Bartnik R., Isenberg J.: The constraint equations. In: Chruściel, P.T., Friedrich, H. (eds) The Einstein Equations and the Large Scale Behavior of Gravitational Fields, pp. 1–9. Birkhäuser, Basel (2004) · Zbl 1073.83009
[3] Calabi E.: An extension of E. Hopf’s maximum principle with application to Riemannian geometry. Duke J. Math. 25, 45–56 (1957) · Zbl 0079.11801 · doi:10.1215/S0012-7094-58-02505-5
[4] Choquet-Bruhat Y., Isenberg J., Pollack D.: The Einstein-scalar field constraints on asymptotically Euclidean manifolds. Chin. Ann. Math. Ser. B 27, 31–52 (2006) · Zbl 1112.83008 · doi:10.1007/s11401-005-0280-z
[5] Choquet-Bruhat Y., Isenberg J., Pollack D.: The constraint equations for the Einstein-scalar field system on compact manifolds. Class. Quantum Grav. 24, 809–828 (2007) · Zbl 1111.83002 · doi:10.1088/0264-9381/24/4/004
[6] Choquet-Bruhat Y., York J.: The Cauchy problem. In: Held, A. (eds) General Relativity and Gravitation–The Einstein Centenary, pp. 99–172. Plenum Press, New York (1980)
[7] Cortázar C., del Pino M., Elgueta M.: The Problem of uniqueness of the limit in a semilinear heat equation. Commun. Part. Differ. Equ. 24, 2147–2172 (1999) · Zbl 0940.35107 · doi:10.1080/03605309908821497
[8] Evans L.C.: Weak Convergence Methods for Nonlinear Partial Differential Equations. Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, Providence (1990) · Zbl 0698.35004
[9] Hebey E., Pacard F., Pollack D.: A variational analysis of Einstein-Scalar field Lichnerowicz equations on compact Riemannian manifolds. Commun. Math. Phys. 278, 117–132 (2008) · Zbl 1218.53042 · doi:10.1007/s00220-007-0377-1
[10] Isenberg J.: Constant mean curvature solutions of the Einstein constraint equations on closed manifolds. Class. Quantum Grav. 12, 2249–2274 (1995) · Zbl 0840.53056 · doi:10.1088/0264-9381/12/9/013
[11] Isenberg J., Maxwell D., Pollack D.: A gluing constructions for non-vacuum solutions of the Einstein constraint equations. Adv. Theor. Math. Phys. 9, 129–172 (2005) · Zbl 1101.83005 · doi:10.4310/ATMP.2005.v9.n1.a3
[12] Ma L., Wei J.C.: Properties of positive solutions to an elliptic equation with negative exponent. J. Funct. Anal. 254, 1058–1087 (2008) · Zbl 1136.35036 · doi:10.1016/j.jfa.2007.09.017
[13] Ma L., Zhao L., Song X.F.: Gradient estimate for the degenerate parabolic equation u t = {\(\Delta\)}F(u)+H(u) on manifolds. J. Differ. Equ. 244, 1157–1177 (2008) · Zbl 1142.53028 · doi:10.1016/j.jde.2007.08.014
[14] Struwe M.: The existence of surfaces of constant mean curvature with free boundaries. Acta Math. 160, 19–64 (1988) · Zbl 0646.53005 · doi:10.1007/BF02392272
[15] Yau S.T.: On the Harnack inequalities of partial differential equations. Commun. Anal. Geom. 2, 431–450 (1994) · Zbl 0841.58059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.