×

Error expansion of trapezoidal rule for certain two-dimensional Cauchy principal value integrals. (English) Zbl 1396.65078

Summary: In this article, we discuss the classical composite trapezoidal rule for the computation of two dimensional singular integrals. The purpose is to obtain the convergence results O(h2) which is the same as the Riemann integral convergence rate at certain points of the classical composite trapezoidal rule. With the error functional of trapezoidal rule for computing two dimensional singular integrals, we get the superconvergence phenomenon when the special function in error functional is equal to zero. At last, some numerical examples are reported to illustrate our theoretical analysis which agree with it very well.

MSC:

65D30 Numerical integration
65N38 Boundary element methods for boundary value problems involving PDEs
30E20 Integration, integrals of Cauchy type, integral representations of analytic functions in the complex plane
Full Text: DOI

References:

[1] Yu, D. H., Mathematical Theory of Natural Boundary Element Method, (1993), Science Press Beijing
[2] Yu, D. H., Natural Boundary Integrals Method and Its Applications, (2002), Kluwer Academic Publishers · Zbl 1028.65129
[3] Yu, D. H., Methods of Natural Boundary Equation and Its Application, (2015), Science Press Beijing
[4] Chen, J. T.; Hong, H.-K., Review of dual boundary element methods with emphasis on hypersingular integrals and divergent series, Appl. Mech. Rev. ASME, 52, 1, 17-33, (1999)
[5] Eshkuvatov, Z. K.; Nik Long, N. M.A.; Abdulkawi, M., Approximate solution of singular integral equations of the first kind with Cauchy kernel, Appl. Math. Lett., 22, 651-657, (2009) · Zbl 1161.65370
[6] Lifanov, I. K., Singular Integral Equations and Discrete Vortices, (1996), VSP Utrecht, The Netherlands · Zbl 0871.65110
[7] Yu, D. H., Canonical integral equations of bi-harmonic elliptic boundary value problems, Math. Numer. Sin., 4, 3, 330-336, (1982) · Zbl 0549.35035
[8] Yu, D. H., Numerical solutions of harmonic and biharmonic canonical integral equations in interior or exterior circular domains, J. Comput. Math., 1, 1, 52-62, (1983) · Zbl 0557.65069
[9] Ioakimidis, N. I., On the uniform convergence of Gaussian quadrature rules for Cauchy principal value integrals and their derivatives, Math. Comp., 44, 191-198, (1985) · Zbl 0562.65088
[10] Linz, P., On the approximate computation of certain strongly singular integrals, Computing, 35, 345-353, (1985) · Zbl 0569.65016
[11] Yu, D. H., The approximate computation of hypersingular integrals on interval, Numer. Math. J. Chin. Univ. (Engl. Ser.), 1, 114-127, (1992) · Zbl 0778.65015
[12] Yu, D. H., The numerical computation of hypersingular integrals and its application in BEM, Adv. Eng. Softw., 18, 103-109, (1993) · Zbl 0806.65016
[13] Yu, D. H., The computation of hypersingular integrals on circle and its error estimates, Numer. Math. J. Chinese Univ., 16, 4, 332-339, (1994) · Zbl 0816.65009
[14] Koler, P., On the error of quadrature formulae for Cauchy principal value integrals based on piecewise interpolation, J. Approx. Theory Appl., 13, 58-69, (1997) · Zbl 0894.41019
[15] Wu, J. M.; Yu, D. H., The approximate computation of hypersingular integrals on interval, Chinese J. Numer. Math. Appl., 21, 25-33, (1999)
[16] Du, Q. K., Evaluations of certain hypersingular integrals on interval, Internat. J. Numer. Methods Engrg., 51, 1195-1210, (2001) · Zbl 0990.65033
[17] Li, J.; Zhang, X. P.; Yu, D. H., Superconvergence and ultraconvergence of Newton-cotes rules for supersingular integrals, J. Comput. Appl. Math., 233, 2841-2854, (2010) · Zbl 1192.65031
[18] Li, J.; Zhang, X. P.; Yu, D. H., Extrapolation methods to compute hypersingular integral in boundary element methods, Sci. China Math., 56, 8, 1647-1660, (2013) · Zbl 1273.35335
[19] Li, J.; Li, X. Z., The modified trapezoidal rule for computing hypersingular integral on interval, J. Appl. Math., 2013, 9, (2013), Article ID 736834 · Zbl 1397.65038
[20] Li, J.; Wu, J. M.; Yu, D. H., Generalized extrapolation for computation of hypersingular integrals in boundary element methods, CMES Comput. Model. Eng. Sci., 42, 2, 151-175, (2009) · Zbl 1457.65235
[21] Eshkuvatov, Z. K.; Nik Long, N. M.A.; Abdulkawi, M., Numerical evaluation for Cauchy type singular integrals on the interval, J. Comput. Appl. Math., 233, 1995-2001, (2010) · Zbl 1184.65032
[22] Criscuolo, G.; Mastroianni, G., Convergence of Gauss type product fomulas for the evaluation of two dimensional Cauchy pricipal value integral, BIT, 27, 72-84, (1987) · Zbl 0641.41020
[23] Monegato, G., Convergence of product formulas for the numerical evaluation of certain two-dimensional Cauchy principal value integrals, Numer. Math., 43, 161-173, (1984) · Zbl 0506.41032
[24] Li, J.; Yu, D. H., The superconvergence of certain two-dimensional Cauchy principal value integrals, CMES Comput. Model. Eng. Sci., 71, 331-346, (2011) · Zbl 1231.65057
[25] Li, J.; Yu, D. H., The superconvergence of certain two-dimensional Hilbert singular integrals, CMES Comput. Model. Eng. Sci., 82, 233-252, (2011) · Zbl 1356.65083
[26] Li, J.; Zhao, Q. L.; Huang, H. Y., Error expansion of piecewise constant interpolation rule for certain two-dimensional Cauchy principal value integrals, Comput. Math. Appl., 72, 2119-2142, (2016) · Zbl 1368.65032
[27] Wu, J. M.; Sun, W. W., The superconvergence of Newton-cotes rules for the Hadamard finite-part integral on an interval, Numer. Math., 109, 143-165, (2008) · Zbl 1147.65026
[28] Zhang, X. P.; Wu, J. M.; Yu, D. H., Superconvergence of the composite simpsons rule for a certain finite-part integral and its applications, J. Comput. Appl. Math., 223, 598-613, (2009) · Zbl 1158.65022
[29] Zhang, X. P.; Yu, D. H.; Wu, J. M., The superconvergence of the composite Newton-cotes rules for Hadamard finite-part integral on a circle, Computing, 85, 219-244, (2009) · Zbl 1177.65044
[30] Li, J.; Rui, H. X.; Yu, D. H., Composite simpsons rule for computing supersingular integral on circle, CMES Comput. Model. Eng. Sci., 97, 6, 463-481, (2014) · Zbl 1356.65081
[31] Li, J.; Yu, D. H., Collocation methods to solve certain Hilbert integral equation with middle rectangle rule, CMES Comput. Model. Eng. Sci., 102, 2, 103-126, (2014) · Zbl 1356.65260
[32] Li, J.; Rui, H. X.; Yu, D. H., Trapezoidal rule for computing supersingular integral on a circle, J. Sci. Comput., 66, 740-760, (2016) · Zbl 1362.65133
[33] Li, J.; Yu, D. H., Error expansion of classical trapezoidal rule for computing Cauchy principal value integral, CMES Comput. Model. Eng. Sci., 93, 47-67, (2013) · Zbl 1356.65082
[34] Li, J.; Yang, J. E.; Yu, D. H., Error expansion of classical mid-point rectangle rule for computing Cauchy principal value integrals on an interval, Int. J. Comput. Math., 91, 10, 2294-2306, (2014) · Zbl 1306.65173
[35] Karatsuba, E. A., On the computation of the Euler constant \(\gamma\), Numer. Algorithms, 24, 83-97, (2000) · Zbl 0958.33001
[36] Andrews, L. C., Special Functions of Mathematics for Engineers, (1992), McGraw-Hill. Inc.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.