×

Convergence of Gauss type product formulas for the evaluation of two- dimensional Cauchy principal value integrals. (English) Zbl 0641.41020

The two-dimensional Cauchy principal value integral \(\Phi\) (f;s,t) of a function f is defined by \[ \Phi (f;s,t)=\lim_{\epsilon_ 1,\epsilon_ 2\to 0\quad +}\iint_{D_{\epsilon_ 1,\epsilon_ 2}}\frac{f(x,y)}\quad {(x-s)(y-s)}w_ 1(x)w_ 2(y)dxdy, \] (s,t)\(\in D\subseteq (-1,1)\) 2, where \[ D_{\epsilon_ 1,\epsilon_ 2}=\{x,y\in I/| x-s| \geq \epsilon_ 1,\quad (y-t)\geq \epsilon_ 2,\quad (\epsilon_ 1>0,\epsilon_ 2>0)\}, \] \(w_ 1(x)=\psi_ 1(x)\prod^{p+1}_{i=0}| x-s_ i|^{\alpha_ i},\) \(p\in N\), \(w_ 2(y)=\psi_ 2(y)\prod^{q+1}_{j=0}| y-t_ j|^{\beta_ j},\) \(q\in N\), \(\alpha_ i>-1\), \(\beta_ j>-1\), \(- 1=s_ 0<s_ 1<...<s_{p+1}=1\), \(-1=t_ 0<t_ 1<...<t_{q+1}=1\), \(\psi_ k\geq 0\), \(\psi_ k^{-1}\) is integrable on \([-I,+I]\) and the moduli of continuity w of \(\psi_ k\) satisfy the condition \(\int^{1}_{0}w(\psi_ k;u)u^{-1}du<\infty\) \((k=1,2)\). Let \(\Delta\) be a closed set such that \(\Delta\subset (-1,1)\) 2 and no points of the straight lines \(x=s_ i\), \(i=1,...,p\) and \(y=t_ j\), \(j=1,...,q\) belongs to \(\Delta\). We denote by C k(I), \(k\geq 0\), the space of all continuous functions on I with continuous partial derivatives of order i, where \(i=0,1,...,k.\)
Let \(\| f\|_ J=\max_{J}| f(x,y)|\) and \(\| f\| =\| f\|_ I\), \(J\subseteq I\). The modulus of continuity of the function \(f\in C(J)\) is defined by \[ w_ J(f;\delta)=\max \{| \Delta_{h_ 1,h_ 2}f(x,y)|:(x,y)\in J,\quad (n+h_ 1,y+h_ 2)\in J,\quad h_ 1+h_ 2<\delta \}, \] \(w(f;\delta)=w_ 1(f;\delta),\) where \(h_ 1,h_ 2\), \(\delta\geq 0\), \(\Delta_{h_ 1,h_ 2}=f(x+h_ 1,y+h_ 2)-f(x,y).\) We write \[ \overline{TD}=\{f\in C(I):\int^{1}_{0}\log u^{-1}w(f;u)u^{-1}du<\infty \}. \] In the main result of the paper the author proves that for any function \(f\in \overline{TD}\) there exists a subsequence of the sequence \(\{\Phi_{m,n}f\}_{(m,n)\in N\times N}\) which converges uniformly to \(\Phi\) f in \(\Delta\).
Reviewer: G.S.Pandey

MSC:

41A55 Approximate quadratures
Full Text: DOI

References:

[1] G. Criscuolo and G. Mastroianni,On the convergence of the Gauss quadrature rules for Cauchy principal value integrals, Ricerche di Matematica, XXXV (1986), 45–60. · Zbl 0638.65016
[2] G. Criscuolo and G. Mastroianni,Sulla convergenza di formule produtto di tipo gaussiano per il calcolo di integrali V.P. a due dimensioni, Rapp. Tecn. 11/85 IAM-CNR (1985).
[3] A. I. Kalandiya,On a direct method of solution of an equation in wing theory and its application to the theory of elasticity, Mat. Sb. 42 (1957), 249–272 (Russian).
[4] D. Jackson,The Theory of Approximation, Amer. Math. Soc., 1930. · JFM 56.0936.01
[5] D. S. Lubinsky and P. Rabinowitz,Rates of convergences of Gaussian quadrature for singular integrands, Math. Comp. (167) 43 (1984), 219–242. · Zbl 0574.41028 · doi:10.1090/S0025-5718-1984-0744932-2
[6] G. Mastroianni,Sull’approssimazione di funzioni continue mediante operatori lineari, Calcolo (IV) XIV (1977), 343–368. · Zbl 0367.41011 · doi:10.1007/BF02575991
[7] G. Monegato,Convergence of product formulas for the numerical evaluation of certain two-dimensional Cauchy principal value integrals, Numer. Math. 43 (1984), 161–173. · doi:10.1007/BF01390121
[8] P. Rabinowitz,On the convergence of Hunter’s method for Cauchy principal value integrals, inNumerical Solution of Singular Integral Equations, Edited by A. Gerasoulis and R. Vichnevetsky IMACS, 1984.
[9] P. O. Runck,Bemerkungen zu den Approximationssätzen von Jackson und Jackson-Timan, ISNM 10 (1969), 303–308.
[10] M. A. Sheshko,On the convergence of cubature processes for two-dimensional integrals, Dokl. Akad. Nauk. BSSR 23 (1979), 293–296.
[11] D. D. Stancu,The remainder of certain linear formulas in two variables, SIAM J. Numer. Anal. 1 (1964), 137–163. · Zbl 0143.07901
[12] A. F. Timan,Theory of Approximation of Functions of a Real Variable, Pergamon Press, Oxford, 1963. · Zbl 0117.29001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.