×

Space-time in the SYK model. (English) Zbl 1395.83088

Summary: We consider the question of identifying the bulk space-time of the SYK model. Focusing on the signature of emergent space-time of the (Euclidean) model, we explain the need for non-local (Radon-type) transformations on external legs of \(n\)-point Green’s functions. This results in a dual theory with Euclidean AdS signature with additional legfactors. We speculate that these factors incorporate the coupling of additional bulk states similar to the discrete states of 2d string theory.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C80 Analogues of general relativity in lower dimensions
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics

References:

[1] S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett.70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
[2] A. Kitaev, A simple model of quantum holography, KITP strings seminar and Entanglement2015 program, February 12, April 7, and May 27, Santa Barbara, U.S.A. (2015). · Zbl 1391.83080
[3] A. Kitaev, Hidden correlations in the Hawking radiation and thermal noise, talk given at the Fundamental Physics Prize Symposium , November 10, Berkeley, U.S.A. (2014).
[4] S. Sachdev, Bekenstein-Hawking Entropy and Strange Metals, Phys. Rev.X 5 (2015) 041025 [arXiv:1506.05111] [INSPIRE].
[5] Polchinski, J.; Rosenhaus, V., The spectrum in the sachdev-ye-Kitaev model, JHEP, 04, 001, (2016) · Zbl 1388.81067 · doi:10.1007/JHEP04(2016)001
[6] Maldacena, J.; Stanford, D., Remarks on the sachdev-ye-Kitaev model, Phys. Rev., D 94, 106002, (2016)
[7] Jevicki, A.; Suzuki, K.; Yoon, J., Bi-local holography in the SYK model, JHEP, 07, 007, (2016) · Zbl 1390.83116 · doi:10.1007/JHEP07(2016)007
[8] Jevicki, A.; Suzuki, K., Bi-local holography in the SYK model: perturbations, JHEP, 11, 046, (2016) · Zbl 1390.81520 · doi:10.1007/JHEP11(2016)046
[9] R.A. Davison et al., Thermoelectric transport in disordered metals without quasiparticles: the Sachdev-Ye-Kitaev models and holography, Phys. Rev.B 95 (2017) 155131 [arXiv:1612.00849] [INSPIRE].
[10] Gross, DJ; Rosenhaus, V., The bulk dual of SYK: cubic couplings, JHEP, 05, 092, (2017) · Zbl 1380.81322 · doi:10.1007/JHEP05(2017)092
[11] Gross, DJ; Rosenhaus, V., All point correlation functions in SYK, JHEP, 12, 148, (2017) · Zbl 1383.81218 · doi:10.1007/JHEP12(2017)148
[12] Kitaev, A.; Suh, SJ, The soft mode in the sachdev-ye-Kitaev model and its gravity dual, JHEP, 05, 183, (2018) · Zbl 1391.83080 · doi:10.1007/JHEP05(2018)183
[13] Shenker, SH; Stanford, D., Black holes and the butterfly effect, JHEP, 03, 067, (2014) · Zbl 1333.83111 · doi:10.1007/JHEP03(2014)067
[14] S. Leichenauer, Disrupting entanglement of black holes, Phys. Rev.D 90 (2014) 046009 [arXiv:1405.7365] [INSPIRE].
[15] Shenker, SH; Stanford, D., Stringy effects in scrambling, JHEP, 05, 132, (2015) · Zbl 1388.83500 · doi:10.1007/JHEP05(2015)132
[16] Maldacena, J.; Shenker, SH; Stanford, D., A bound on chaos, JHEP, 08, 106, (2016) · Zbl 1390.81388 · doi:10.1007/JHEP08(2016)106
[17] J. Polchinski, Chaos in the black hole S-matrix, arXiv:1505.08108 [INSPIRE]. · Zbl 1358.83057
[18] P. Caputa, T. Numasawa and A. Veliz-Osorio, Out-of-time-ordered correlators and purity in rational conformal field theories, PTEP2016 (2016) 113B06 [arXiv:1602.06542] [INSPIRE]. · Zbl 1361.81132
[19] Anninos, D.; Anous, T.; Denef, F., Disordered quivers and cold horizons, JHEP, 12, 071, (2016) · doi:10.1007/JHEP12(2016)071
[20] Turiaci, G.; Verlinde, H., On CFT and quantum chaos, JHEP, 12, 110, (2016) · Zbl 1390.81191 · doi:10.1007/JHEP12(2016)110
[21] Y.-Z. You, A.W.W. Ludwig and C. Xu, Sachdev-Ye-Kitaev model and thermalization on the boundary of many-body localized fermionic symmetry protected topological states, Phys. Rev.B 95 (2017) 115150 [arXiv:1602.06964] [INSPIRE].
[22] A.M. García-García and J.J.M. Verbaarschot, Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, Phys. Rev.D 94 (2016) 126010 [arXiv:1610.03816] [INSPIRE].
[23] Cotler, JS; etal., Black holes and random matrices, JHEP, 05, 118, (2017) · Zbl 1380.81307 · doi:10.1007/JHEP05(2017)118
[24] Hartnoll, SA; Huijse, L.; Mazenc, EA, Matrix quantum mechanics from qubits, JHEP, 01, 010, (2017) · Zbl 1373.83083 · doi:10.1007/JHEP01(2017)010
[25] Y. Liu, M.A. Nowak and I. Zahed, Disorder in the Sachdev-Yee-Kitaev model, Phys. Lett.B 773 (2017) 647 [arXiv:1612.05233] [INSPIRE].
[26] Krishnan, C.; Sanyal, S.; Bala Subramanian, PN, Quantum chaos and holographic tensor models, JHEP, 03, 056, (2017) · Zbl 1377.83049 · doi:10.1007/JHEP03(2017)056
[27] A.M. García-García and J.J.M. Verbaarschot, Analytical spectral density of the Sachdev-Ye-Kitaev model at finite N, Phys. Rev.D 96 (2017) 066012 [arXiv:1701.06593] [INSPIRE]. · Zbl 1390.83135
[28] Li, T.; Liu, J.; Xin, Y.; Zhou, Y., Supersymmetric SYK model and random matrix theory, JHEP, 06, 111, (2017) · Zbl 1380.81406 · doi:10.1007/JHEP06(2017)111
[29] T. Kanazawa and T. Wettig, Complete random matrix classification of SYK models with\( \mathcal{N}=0,1 \)and 2 supersymmetry, JHEP09 (2017) 050 [arXiv:1706.03044] [INSPIRE]. · Zbl 1382.81183
[30] Sonner, J.; Vielma, M., Eigenstate thermalization in the sachdev-ye-Kitaev model, JHEP, 11, 149, (2017) · Zbl 1383.81258 · doi:10.1007/JHEP11(2017)149
[31] Erdmenger, J.; etal., Holographic impurities and Kondo effect, Fortsch. Phys., 64, 322, (2016) · Zbl 1339.82016 · doi:10.1002/prop.201500079
[32] I. Danshita, M. Hanada and M. Tezuka, Creating and probing the Sachdev-Ye-Kitaev model with ultracold gases: towards experimental studies of quantum gravity, PTEP2017 (2017) 083I01 [arXiv:1606.02454] [INSPIRE].
[33] Krishnan, C.; Pavan Kumar, KV; Rosa, D., Contrasting SYK-like models, JHEP, 01, 064, (2018) · Zbl 1384.83061 · doi:10.1007/JHEP01(2018)064
[34] Gross, DJ; Rosenhaus, V., A generalization of sachdev-ye-Kitaev, JHEP, 02, 093, (2017) · Zbl 1377.81172 · doi:10.1007/JHEP02(2017)093
[35] Gu, Y.; Qi, X-L; Stanford, D., Local criticality, diffusion and chaos in generalized sachdev-ye-Kitaev models, JHEP, 05, 125, (2017) · Zbl 1380.81325 · doi:10.1007/JHEP05(2017)125
[36] Berkooz, M.; Narayan, P.; Rozali, M.; Simón, J., Higher dimensional generalizations of the SYK model, JHEP, 01, 138, (2017) · Zbl 1373.81313 · doi:10.1007/JHEP01(2017)138
[37] W. Fu, D. Gaiotto, J. Maldacena and S. Sachdev, Supersymmetric Sachdev-Ye-Kitaev models, Phys. Rev.D 95 (2017) 026009 [arXiv:1610.08917] [INSPIRE].
[38] W. Fu and S. Sachdev, Numerical study of fermion and boson models with infinite-range random interactions, Phys. Rev.B 94 (2016) 035135 [arXiv:1603.05246] [INSPIRE].
[39] L. García- Álvarez et al., Digital quantum simulation of minimal AdSCFT, Phys. Rev. Lett.119 (2017) 040501 [arXiv:1607.08560] [INSPIRE].
[40] T. Nishinaka and S. Terashima, A note on Sachdev-Ye-Kitaev like model without random coupling, Nucl. Phys.B 926 (2018) 321 [arXiv:1611.10290] [INSPIRE]. · Zbl 1380.81194
[41] G. Turiaci and H. Verlinde, Towards a 2d QFT Analog of the SYK model, JHEP10 (2017) 167 [arXiv:1701.00528] [INSPIRE]. · Zbl 1383.83098
[42] Jian, S-K; Yao, H., Solvable sachdev-ye-Kitaev models in higher dimensions: from diffusion to many-body localization, Phys. Rev. Lett., 119, 206602, (2017) · doi:10.1103/PhysRevLett.119.206602
[43] A. Chew, A. Essin and J. Alicea, Approximating the Sachdev-Ye-Kitaev model with Majorana wires, Phys. Rev.B 96 (2017) 121119 [arXiv:1703.06890] [INSPIRE].
[44] Murugan, J.; Stanford, D.; Witten, E., More on supersymmetric and 2d analogs of the SYK model, JHEP, 08, 146, (2017) · Zbl 1381.81121 · doi:10.1007/JHEP08(2017)146
[45] Yoon, J., Supersymmetric SYK model: bi-local collective superfield/supermatrix formulation, JHEP, 10, 172, (2017) · Zbl 1383.81263 · doi:10.1007/JHEP10(2017)172
[46] C. Peng, M. Spradlin and A. Volovich, Correlators in the\( \mathcal{N}=2 \)supersymmetric SYK model, JHEP10 (2017) 202 [arXiv:1706.06078] [INSPIRE]. · Zbl 1383.81310
[47] Cai, W.; Ge, X-H; Yang, G-H, Diffusion in higher dimensional SYK model with complex fermions, JHEP, 01, 076, (2018) · Zbl 1384.81093 · doi:10.1007/JHEP01(2018)076
[48] E. Witten, An SYK-like model without disorder, arXiv:1610.09758 [INSPIRE].
[49] R. Gurau, The complete 1/N expansion of a SYK-like tensor model, Nucl. Phys.B 916 (2017) 386 [arXiv:1611.04032] [INSPIRE]. · Zbl 1356.81180
[50] Gurau, R., Quenched equals annealed at leading order in the colored SYK model, Europhys. Lett., 119, 30003, (2017) · doi:10.1209/0295-5075/119/30003
[51] R. Gurau, The ıϵ prescription in the SYK model, arXiv:1705.08581 [INSPIRE]. · Zbl 1356.81180
[52] R. Gurau, The 1/N expansion of tensor models with two symmetric tensors, arXiv:1706.05328 [INSPIRE]. · Zbl 1393.81026
[53] I.R. Klebanov and G. Tarnopolsky, Uncolored random tensors, melon diagrams and the Sachdev-Ye-Kitaev models, Phys. Rev.D 95 (2017) 046004 [arXiv:1611.08915] [INSPIRE].
[54] Klebanov, IR; Tarnopolsky, G., On large N limit of symmetric traceless tensor models, JHEP, 10, 037, (2017) · Zbl 1383.81239 · doi:10.1007/JHEP10(2017)037
[55] S. Giombi, I.R. Klebanov and G. Tarnopolsky, Bosonic tensor models at large N and small ϵ, Phys. Rev.D 96 (2017) 106014 [arXiv:1707.03866] [INSPIRE].
[56] K. Bulycheva, I.R. Klebanov, A. Milekhin and G. Tarnopolsky, Spectra of operators in large N tensor models, Phys. Rev.D 97 (2018) 026016 [arXiv:1707.09347] [INSPIRE]. · Zbl 1387.81330
[57] Peng, C.; Spradlin, M.; Volovich, A., A supersymmetric SYK-like tensor model, JHEP, 05, 062, (2017) · Zbl 1380.81355 · doi:10.1007/JHEP05(2017)062
[58] Peng, C., Vector models and generalized SYK models, JHEP, 05, 129, (2017) · Zbl 1380.81249 · doi:10.1007/JHEP05(2017)129
[59] F. Ferrari, The large D limit of planar diagrams, arXiv:1701.01171 [INSPIRE]. · Zbl 1387.83024
[60] T. Azeyanagi, F. Ferrari and F.I. Schaposnik Massolo, Phase diagram of planar matrix quantum mechanics, tensor and Sachdev-Ye-Kitaev models, Phys. Rev. Lett.120 (2018) 061602 [arXiv:1707.03431] [INSPIRE]. · Zbl 1383.81264
[61] F. Ferrari, V. Rivasseau and G. Valette, A new large N expansion for general matrix-tensor models, arXiv:1709.07366 [INSPIRE].
[62] Azeyanagi, T.; etal., More on the new large D limit of matrix models, Annals Phys., 393, 308, (2018) · Zbl 1390.81287 · doi:10.1016/j.aop.2018.04.010
[63] H. Itoyama, A. Mironov and A. Morozov, Rainbow tensor model with enhanced symmetry and extreme melonic dominance, Phys. Lett.B 771 (2017) 180 [arXiv:1703.04983] [INSPIRE]. · Zbl 1372.81110
[64] Itoyama, H.; Mironov, A.; Morozov, A., Ward identities and combinatorics of rainbow tensor models, JHEP, 06, 115, (2017) · Zbl 1380.83067 · doi:10.1007/JHEP06(2017)115
[65] A. Mironov and A. Morozov, Correlators in tensor models from character calculus, Phys. Lett.B 774 (2017) 210 [arXiv:1706.03667] [INSPIRE]. · Zbl 1403.81036
[66] H. Itoyama, A. Mironov and A. Morozov, Cut and join operator ring in tensor models, Nucl. Phys.B 932 (2018) 52 [arXiv:1710.10027] [INSPIRE]. · Zbl 1391.81119
[67] Narayan, P.; Yoon, J., SYK-like tensor models on the lattice, JHEP, 08, 083, (2017) · Zbl 1381.81091 · doi:10.1007/JHEP08(2017)083
[68] S. Chaudhuri et al., Abelian tensor models on the lattice, Phys. Rev.D 97 (2018) 086007 [arXiv:1705.01930] [INSPIRE].
[69] Yoon, J., SYK models and SYK-like tensor models with global symmetry, JHEP, 10, 183, (2017) · Zbl 1383.81264 · doi:10.1007/JHEP10(2017)183
[70] Diaz, P.; Rey, S-J, Orthogonal bases of invariants in tensor models, JHEP, 02, 089, (2018) · Zbl 1387.83024 · doi:10.1007/JHEP02(2018)089
[71] Mello Koch, R.; etal., Gauge invariants, correlators and holography in bosonic and fermionic tensor models, JHEP, 09, 011, (2017) · Zbl 1382.81194 · doi:10.1007/JHEP09(2017)011
[72] S. Choudhury et al., Notes on melonic O(\(N\))\^{}{\(q\)−1}tensor models, JHEP06 (2018) 094 [arXiv:1707.09352] [INSPIRE]. · Zbl 1395.83106
[73] Ben Geloun, J.; Ramgoolam, S., Tensor models, Kronecker coefficients and permutation centralizer algebras, JHEP, 11, 092, (2017) · Zbl 1383.81213 · doi:10.1007/JHEP11(2017)092
[74] Prakash, S.; Sinha, R., A complex fermionic tensor model in d dimensions, JHEP, 02, 086, (2018) · Zbl 1387.81330 · doi:10.1007/JHEP02(2018)086
[75] J. Ben Geloun and V. Rivasseau, A renormalizable SYK-type tensor field theory, arXiv:1711.05967 [INSPIRE]. · Zbl 1261.83016
[76] S.R. Das and A. Jevicki, Large N collective fields and holography, Phys. Rev.D 68 (2003) 044011 [hep-th/0304093] [INSPIRE]. · Zbl 1244.81049
[77] I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(\(N\)) vector model, Phys. Lett.B 550 (2002) 213 [hep-th/0210114] [INSPIRE]. · Zbl 1001.81057
[78] R. de Mello Koch, A. Jevicki, K. Jin and J.P. Rodrigues, AdS_{4}/CF T_{3}construction from collective fields, Phys. Rev.D 83 (2011) 025006 [arXiv:1008.0633] [INSPIRE].
[79] Mello Koch, R.; Jevicki, A.; Rodrigues, JP; Yoon, J., Holography as a gauge phenomenon in higher spin duality, JHEP, 01, 055, (2015) · doi:10.1007/JHEP01(2015)055
[80] R. de Mello Koch, A. Jevicki, J.P. Rodrigues and J. Yoon, Canonical formulation of O(\(N\)) vector/higher spin correspondence, J. Phys.A 48 (2015) 105403 [arXiv:1408.4800] [INSPIRE]. · Zbl 1423.81163
[81] C. Teitelboim, Gravitation and hamiltonian structure in two space-time dimensions, Phys. Lett.B 126 (1983) 41.
[82] R. Jackiw, Lower dimensional gravity, Nucl. Phys.B 252 (1985) 343. · Zbl 1383.81263
[83] A. Almheiri and J. Polchinski, Models of AdS_{2}backreaction and holography, JHEP11 (2015) 014 [arXiv:1402.6334] [INSPIRE]. · Zbl 1388.83079
[84] K. Jensen, Chaos in AdS_{2}holography, Phys. Rev. Lett.117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].
[85] J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional nearly Anti-de-Sitter space, PTEP2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE]. · Zbl 1361.81112
[86] J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS_{2}backreaction and holography, JHEP07 (2016) 139 [arXiv:1606.03438] [INSPIRE].
[87] S. Förste and I. Golla, Nearly AdS_{2}SUGRA and the super-Schwarzian, Phys. Lett.B 771 (2017) 157 [arXiv:1703.10969] [INSPIRE]. · Zbl 1372.83073
[88] G. Sárosi, AdS_{2}holography and the SYK model, PoSModave2017 (2018) 001 [arXiv:1711.08482] [INSPIRE].
[89] Mandal, G.; Nayak, P.; Wadia, SR, Coadjoint orbit action of Virasoro group and two-dimensional quantum gravity dual to SYK/tensor models, JHEP, 11, 046, (2017) · Zbl 1383.83098 · doi:10.1007/JHEP11(2017)046
[90] M. Cvetič and I. Papadimitriou, AdS_{2}holographic dictionary, JHEP12 (2016) 008 [Erratum ibid.1701 (2017) 120] [arXiv:1608.07018] [INSPIRE]. · Zbl 1373.81313
[91] K. Hashimoto and N. Tanahashi, Universality in chaos of particle motion near black hole horizon, Phys. Rev.D 95 (2017) 024007 [arXiv:1610.06070] [INSPIRE]. · Zbl 1380.81325
[92] M. Blake and A. Donos, Diffusion and chaos from near AdS_{2}horizons, JHEP02 (2017) 013 [arXiv:1611.09380] [INSPIRE]. · Zbl 1377.81155
[93] M. Mezei, S.S. Pufu and Y. Wang, \(A\) 2d/1d holographic duality, arXiv:1703.08749 [INSPIRE]. · Zbl 1384.83061
[94] Taylor, M., Generalized conformal structure, Dilaton gravity and SYK, JHEP, 01, 010, (2018) · Zbl 1384.83044
[95] D. Grumiller et al., Menagerie of AdS_{2}boundary conditions, JHEP10 (2017) 203 [arXiv:1708.08471] [INSPIRE]. · Zbl 1383.83114
[96] Stanford, D.; Witten, E., Fermionic localization of the Schwarzian theory, JHEP, 10, 008, (2017) · Zbl 1383.83099 · doi:10.1007/JHEP10(2017)008
[97] Mertens, TG; Turiaci, GJ; Verlinde, HL, Solving the Schwarzian via the conformal bootstrap, JHEP, 08, 136, (2017) · Zbl 1381.83089 · doi:10.1007/JHEP08(2017)136
[98] Das, SR; Jevicki, A.; Suzuki, K., Three dimensional view of the SYK/AdS duality, JHEP, 09, 017, (2017) · Zbl 1382.83075 · doi:10.1007/JHEP09(2017)017
[99] Das, SR; Ghosh, A.; Jevicki, A.; Suzuki, K., Three dimensional view of arbitrary q SYK models, JHEP, 02, 162, (2018) · Zbl 1387.81309 · doi:10.1007/JHEP02(2018)162
[100] J. Maldacena, private communication. · Zbl 1377.83049
[101] Czech, B.; etal., A stereoscopic look into the bulk, JHEP, 07, 129, (2016) · Zbl 1390.83101 · doi:10.1007/JHEP07(2016)129
[102] J. de Boer et al., Holographic de Sitter geometry from entanglement in conformal field theory, Phys. Rev. Lett.116 (2016) 061602 [arXiv:1509.00113] [INSPIRE]. · Zbl 1373.83083
[103] Boer, J.; etal., Entanglement, holography and causal diamonds, JHEP, 08, 162, (2016) · Zbl 1390.83135 · doi:10.1007/JHEP08(2016)162
[104] Balasubramanian, V.; Boer, J.; Minic, D., Notes on de Sitter space and holography, Class. Quant. Grav., 19, 5655, (2002) · Zbl 1009.83002 · doi:10.1088/0264-9381/19/22/302
[105] Bhowmick, S.; Ray, K.; Sen, S., Bulk reconstruction in AdS and gel’fand-graev-Radon transform, JHEP, 10, 082, (2017) · Zbl 1383.81183 · doi:10.1007/JHEP10(2017)082
[106] S.R. Das and A. Jevicki, String field theory and physical interpretation of D = 1 strings, Mod. Phys. Lett.A 5 (1990) 1639 [INSPIRE]. · Zbl 1020.81765
[107] G.W. Moore and N. Seiberg, From loops to fields in 2 − D quantum gravity, Int. J. Mod. Phys.A 7 (1992) 2601 [INSPIRE]. · Zbl 0802.53031
[108] A. Jevicki, Development in 2 − D string theory, talk given at the Workshop on String Theory, Gauge Theory and Quantum Gravity, April 28-29, Trieste, Italy (1993), hep-th/9309115 [INSPIRE].
[109] D.J. Gross, I.R. Klebanov and M.J. Newman, The two point correlation function of the one-dimensional matrix model, Nucl. Phys.B 350 (1991) 621 [INSPIRE].
[110] D.J. Gross and I.R. Klebanov, \(S\) = 1 for c = 1, Nucl. Phys.B 359 (1991) 3 [INSPIRE]. · Zbl 1390.81388
[111] G. Mandal, A.M. Sengupta and S.R. Wadia, Interactions and scattering in d = 1 string theory, Mod. Phys. Lett.A 6 (1991) 1465 [INSPIRE]. · Zbl 1021.81756
[112] A.M. Polyakov, Selftuning fields and resonant correlations in 2D gravity, Mod. Phys. Lett.A 6 (1991) 635 [INSPIRE]. · Zbl 1021.81879
[113] M. Natsuume and J. Polchinski, Gravitational scattering in the c = 1 matrix model, Nucl. Phys.B 424 (1994) 137 [hep-th/9402156] [INSPIRE]. · Zbl 0990.81647
[114] B. Balthazar, V.A. Rodriguez and X. Yin, The c = 1 string theory S-matrix revisited, arXiv:1705.07151 [INSPIRE]. · Zbl 1383.81218
[115] A. Kitaev, Notes on\( \tilde{\text{SL}} \)(2, ℝ) representations, arXiv:1711.08169 [INSPIRE]. · Zbl 1380.81322
[116] T.S. Bunch and P.C.W. Davies, Quantum field theory in de Sitter space: renormalization by point splitting, Proc. Roy. Soc. Lond.A 360 (1978) 117 [INSPIRE].
[117] E. Mottola, Particle creation in de Sitter space, Phys. Rev.D 31 (1985) 754 [INSPIRE]. · Zbl 1390.81520
[118] B. Allen, Vacuum states in de Sitter space, Phys. Rev.D 32 (1985) 3136 [INSPIRE]. · Zbl 1390.83116
[119] A. Jevicki and T. Yoneya, A deformed matrix model and the black hole background in two-dimensional string theory, Nucl. Phys.B 411 (1994) 64 [hep-th/9305109] [INSPIRE]. · Zbl 1049.81599
[120] E.J. Martinec and S.L. Shatashvili, Black hole physics and Liouville theory, Nucl. Phys.B 368 (1992) 338 [INSPIRE]. · Zbl 1388.81067
[121] S.R. Das, Matrix models and black holes, Mod. Phys. Lett.A 8 (1993) 69 [hep-th/9210107] [INSPIRE]. · Zbl 1015.81557
[122] A. Dhar, G. Mandal and S.R. Wadia, Stringy quantum effects in two-dimensional black hole, Mod. Phys. Lett.A 7 (1992) 3703 [hep-th/9210120] [INSPIRE]. · Zbl 1021.81808
[123] G. Watson, A treatise on the theory of bessel functions, Cambridge University Press, Cambridge U.K. (1944). · Zbl 0063.08184
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.