×

Field theoretical derivation of Lüscher’s formula and calculation of finite volume form factors. (English) Zbl 1395.81169

Summary: We initiate a systematic method to calculate both the finite volume energy levels and form factors from the momentum space finite volume two-point function. By expanding the two point function in the volume we extracted the leading exponential volume correction both to the energy of a moving particle state and to the simplest non-diagonal form factor. The form factor corrections are given in terms of a regularized infinite volume 3-particle form factor and terms related to the Lüsher correction of the momentum quantization. We tested these results against second order Lagrangian and Hamiltonian perturbation theory in the sinh-Gordon theory and we obtained perfect agreement.

MSC:

81T16 Nonperturbative methods of renormalization applied to problems in quantum field theory
81R12 Groups and algebras in quantum theory and relations with integrable systems

References:

[1] M. Lüscher, Volume dependence of the energy spectrum in massive quantum field theories. 1. Stable particle states, Commun. Math. Phys.104 (1986) 177 [INSPIRE]. · Zbl 0614.58014
[2] M. Lüscher, Volume dependence of the energy spectrum in massive quantum field theories. 2. Scattering states, Commun. Math. Phys.105 (1986) 153 [INSPIRE].
[3] Pozsgay, B.; Takács, G., Form-factors in finite volume I: form-factor bootstrap and truncated conformal space, Nucl. Phys., B 788, 167, (2008) · Zbl 1220.81161 · doi:10.1016/j.nuclphysb.2007.06.027
[4] Saleur, H., A comment on finite temperature correlations in integrable QFT, Nucl. Phys., B 567, 602, (2000) · Zbl 0951.81067 · doi:10.1016/S0550-3213(99)00665-3
[5] B. Pozsgay and G. Takács, Form factors in finite volume. II. Disconnected terms and finite temperature correlators, Nucl. Phys.B 788 (2008) 209 [arXiv:0706.3605] [INSPIRE]. · Zbl 1220.81162
[6] G. Mussardo, Statistical field theory: an introduction to exactly solved models in statistical physics, Oxford Graduate Texts, Oxford U.K. (2009). · Zbl 1187.82001
[7] L. Samaj and Z. Bajnok, Introduction to the statistical physics of integrable many-body systems, Cambridge University Press, Cambridge U.K. (2013). · Zbl 1307.82002 · doi:10.1017/CBO9781139343480
[8] Beisert, N.; etal., Review of AdS/CFT integrability: an overview, Lett. Math. Phys., 99, 3, (2012) · Zbl 1268.81126 · doi:10.1007/s11005-011-0529-2
[9] Bajnok, Z.; Janik, RA, Four-loop perturbative Konishi from strings and finite size effects for multiparticle states, Nucl. Phys., B 807, 625, (2009) · Zbl 1192.81255 · doi:10.1016/j.nuclphysb.2008.08.020
[10] Bombardelli, D., A next-to-leading luescher formula, JHEP, 01, 037, (2014) · Zbl 1333.83044 · doi:10.1007/JHEP01(2014)037
[11] A.B. Zamolodchikov, Thermodynamic Bethe ansatz in relativistic models. Scaling three state potts and Lee-Yang models, Nucl. Phys.B 342 (1990) 695 [INSPIRE]. · Zbl 1380.81149
[12] Dorey, P.; Tateo, R., Excited states by analytic continuation of TBA equations, Nucl. Phys., B 482, 639, (1996) · Zbl 0925.82044 · doi:10.1016/S0550-3213(96)00516-0
[13] Z. Bajnok and C. Wu, Diagonal form factors from non-diagonal ones, arXiv:1707.08027 [INSPIRE]. · Zbl 1388.81478
[14] Leclair, A.; Mussardo, G., Finite temperature correlation functions in integrable QFT, Nucl. Phys., B 552, 624, (1999) · Zbl 0951.81065 · doi:10.1016/S0550-3213(99)00280-1
[15] Pozsgay, B., Form factor approach to diagonal finite volume matrix elements in integrable QFT, JHEP, 07, 157, (2013) · Zbl 1342.81649 · doi:10.1007/JHEP07(2013)157
[16] Pozsgay, B., Lüscher’s μ-term and finite volume bootstrap principle for scattering states and form factors, Nucl. Phys., B 802, 435, (2008) · Zbl 1190.81129 · doi:10.1016/j.nuclphysb.2008.04.021
[17] Pozsgay, B.; Takács, G., Form factor expansion for thermal correlators, J. Stat. Mech., 1011, (2010) · Zbl 1220.81162 · doi:10.1088/1742-5468/2010/11/P11012
[18] Pozsgay, B.; Szecsenyi, IM; Takács, G., Exact finite volume expectation values of local operators in excited states, JHEP, 04, 023, (2015) · doi:10.1007/JHEP04(2015)023
[19] Teschner, J., On the spectrum of the sinh-Gordon model in finite volume, Nucl. Phys., B 799, 403, (2008) · Zbl 1292.81070 · doi:10.1016/j.nuclphysb.2008.01.021
[20] Z. Bajnok, Review of AdS/CFT integrability. Chapter III.6: thermodynamic Bethe Ansatz, Lett. Math. Phys.99 (2012) 299 [arXiv:1012.3995] [INSPIRE]. · Zbl 1243.81139
[21] Klassen, TR; Melzer, E., On the relation between scattering amplitudes and finite size mass corrections in QFT, Nucl. Phys., B 362, 329, (1991) · doi:10.1016/0550-3213(91)90566-G
[22] Janik, RA; Lukowski, T., Wrapping interactions at strong coupling: the giant magnon, Phys. Rev., D 76, 126008, (2007)
[23] Smirnov, FA, Form-factors in completely integrable models of quantum field theory, Adv. Ser. Math. Phys., 14, 1, (1992) · Zbl 0788.46077 · doi:10.1142/9789812798312_0001
[24] Karowski, M.; Weisz, P., exact form-factors in (1 + 1)-dimensional field theoretic models with soliton behavior, Nucl. Phys., B 139, 455, (1978) · doi:10.1016/0550-3213(78)90362-0
[25] Fring, A.; Mussardo, G.; Simonetti, P., Form-factors for integrable Lagrangian field theories, the sinh-Gordon theory, Nucl. Phys., B 393, 413, (1993) · Zbl 1245.81238 · doi:10.1016/0550-3213(93)90252-K
[26] Rychkov, S.; Vitale, LG, Hamiltonian truncation study of the ϕ\^{}{4}theory in two dimensions, Phys. Rev., D 91, (2015)
[27] Bajnok, Z.; Janik, RA, String field theory vertex from integrability, JHEP, 04, 042, (2015) · Zbl 1388.81478 · doi:10.1007/JHEP04(2015)042
[28] S. Komatsu, Lectures on three-point functions in N = 4 supersymmetric Yang-Mills theory, arXiv:1710.03853 [INSPIRE].
[29] Bajnok, Z.; Janik, RA, From the octagon to the SFT vertex — gluing and multiple wrapping, JHEP, 06, 058, (2017) · Zbl 1380.81149 · doi:10.1007/JHEP06(2017)058
[30] Basso, B.; Goncalves, V.; Komatsu, S., Structure constants at wrapping order, JHEP, 05, 124, (2017) · Zbl 1380.81289 · doi:10.1007/JHEP05(2017)124
[31] B. Basso, S. Komatsu and P. Vieira, Structure constants and integrable bootstrap in planar N = 4 SYM theory, arXiv:1505.06745 [INSPIRE].
[32] Basso, B.; Goncalves, V.; Komatsu, S.; Vieira, P., Gluing hexagons at three loops, Nucl. Phys., B 907, 695, (2016) · Zbl 1336.81052 · doi:10.1016/j.nuclphysb.2016.04.020
[33] B. Eden and A. Sfondrini, Three-point functions in\( \mathcal{N} \) = 4 SYM: the hexagon proposal at three loops, JHEP02 (2016) 165 [arXiv:1510.01242] [INSPIRE]. · Zbl 1388.81517
[34] A. Hegedus, Exact finite volume expectation values of\( \overline{\varPsi}\varPsi \)in the massive Thirring model from light-cone lattice correlators, JHEP03 (2018) 047 [arXiv:1710.09583] [INSPIRE]. · Zbl 1388.81217
[35] Hegedus, A., Lattice approach to finite volume form-factors of the massive Thirring (sine-Gordon) model, JHEP, 08, 059, (2017) · Zbl 1381.81051 · doi:10.1007/JHEP08(2017)059
[36] H. Boos and F. Smirnov, New results on integrable structure of conformal field theory, arXiv:1610.09537 [INSPIRE]. · Zbl 1397.81294
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.