×

Form factor approach to diagonal finite volume matrix elements in integrable QFT. (English) Zbl 1342.81649

Summary: We derive an exact formula for finite volume excited state mean values of local operators in \(1+1\) dimensional Integrable QFT with diagonal scattering. Our result is a non-trivial generalization of the LeClair-Mussardo series, which is a form factor expansion for finite size ground state mean values.

MSC:

81U20 \(S\)-matrix theory, etc. in quantum theory
81R12 Groups and algebras in quantum theory and relations with integrable systems

References:

[1] M. Lüscher, Volume dependence of the energy spectrum in massive quantum field theories. 1. Stable particle states, Commun. Math. Phys.104 (1986) 177 [INSPIRE]. · Zbl 0614.58014 · doi:10.1007/BF01211589
[2] M. Lüscher, Volume dependence of the energy spectrum in massive quantum field theories. 2. Scattering states, Commun. Math. Phys.105 (1986) 153 [INSPIRE]. · Zbl 0614.58014 · doi:10.1007/BF01211097
[3] L. Lellouch and M. Lüscher, Weak transition matrix elements from finite volume correlation functions, Commun. Math. Phys.219 (2001) 31 [hep-lat/0003023] [INSPIRE]. · Zbl 0989.81138 · doi:10.1007/s002200100410
[4] A. Zamolodchikov, Thermodynamic Bethe ansatz in relativistic models. Scaling three state Potts and Lee-Yang models, Nucl. Phys.B 342 (1990) 695 [INSPIRE]. · doi:10.1016/0550-3213(90)90333-9
[5] T.R. Klassen and E. Melzer, Purely elastic scattering theories and their ultraviolet limits, Nucl. Phys.B 338 (1990) 485 [INSPIRE]. · doi:10.1016/0550-3213(90)90643-R
[6] C. Destri and H. de Vega, New thermodynamic Bethe ansatz equations without strings, Phys. Rev. Lett.69 (1992) 2313 [INSPIRE]. · Zbl 0968.82511 · doi:10.1103/PhysRevLett.69.2313
[7] C. Destri and H. De Vega, Unified approach to thermodynamic Bethe ansatz and finite size corrections for lattice models and field theories, Nucl. Phys.B 438 (1995) 413 [hep-th/9407117] [INSPIRE]. · Zbl 1052.82529 · doi:10.1016/0550-3213(94)00547-R
[8] V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory. 2. Q operator and DDV equation, Commun. Math. Phys.190 (1997) 247 [hep-th/9604044] [INSPIRE]. · Zbl 0908.35114 · doi:10.1007/s002200050240
[9] P. Dorey and R. Tateo, Excited states by analytic continuation of TBA equations, Nucl. Phys.B 482 (1996) 639 [hep-th/9607167] [INSPIRE]. · Zbl 0925.82044 · doi:10.1016/S0550-3213(96)00516-0
[10] P. Dorey and R. Tateo, Excited states in some simple perturbed conformal field theories, Nucl. Phys.B 515 (1998) 575 [hep-th/9706140] [INSPIRE]. · Zbl 0945.81055 · doi:10.1016/S0550-3213(97)00838-9
[11] C. Destri and H. de Vega, Nonlinear integral equation and excited states scaling functions in the sine-Gordon model, Nucl. Phys.B 504 (1997) 621 [hep-th/9701107] [INSPIRE]. · Zbl 0925.81029 · doi:10.1016/S0550-3213(97)00468-9
[12] G. Feverati, F. Ravanini and G. Takács, Nonlinear integral equation and finite volume spectrum of sine-Gordon theory, Nucl. Phys.B 540 (1999) 543 [hep-th/9805117] [INSPIRE]. · Zbl 0942.81040 · doi:10.1016/S0550-3213(98)00747-0
[13] G. Feverati, F. Ravanini and G. Takács, Scaling functions in the odd charge sector of sine-Gordon/massive Thirring theory, Phys. Lett.B 444 (1998) 442 [hep-th/9807160] [INSPIRE].
[14] V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable quantum field theories in finite volume: excited state energies, Nucl. Phys.B 489 (1997) 487 [hep-th/9607099] [INSPIRE]. · Zbl 0925.81325 · doi:10.1016/S0550-3213(97)00022-9
[15] N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys.99 (2012) 3 [arXiv:1012.3982] [INSPIRE]. · doi:10.1007/s11005-011-0529-2
[16] F.H. Essler and R.M. Konik, Applications of massive integrable quantum field theories to problems in condensed matter physics, cond-mat/0412421 [INSPIRE]. · Zbl 1084.82019
[17] A. Leclair, F. Lesage, S. Sachdev and H. Saleur, Finite temperature correlations in the one-dimensional quantum Ising model, Nucl. Phys.B 482 (1996) 579 [cond-mat/9606104] [INSPIRE]. · Zbl 0925.82043 · doi:10.1016/S0550-3213(96)00456-7
[18] A. Leclair and G. Mussardo, Finite temperature correlation functions in integrable QFT, Nucl. Phys.B 552 (1999) 624 [hep-th/9902075] [INSPIRE]. · Zbl 0951.81065 · doi:10.1016/S0550-3213(99)00280-1
[19] B. Doyon, Finite-temperature form-factors: a review, SIGMA3 (2007) 011 [hep-th/0611066] [INSPIRE]. · Zbl 1133.81027
[20] B. Pozsgay and G. Takács, Form factors in finite volume. II. Disconnected terms and finite temperature correlators, Nucl. Phys.B 788 (2008) 209 [arXiv:0706.3605] [INSPIRE]. · Zbl 1220.81162 · doi:10.1016/j.nuclphysb.2007.07.008
[21] B. Pozsgay, Mean values of local operators in highly excited Bethe states, J. Stat. Mech.01 (2011) P01011 [arXiv:1009.4662] [INSPIRE]. · Zbl 1456.82213 · doi:10.1088/1742-5468/2011/01/P01011
[22] F.H.L. Essler and R.M. Konik, Finite-temperature dynamical correlations in massive integrable quantum field theories, J. Stat. Mech.09 (2009) P09018 [arXiv:0907.0779] [INSPIRE]. · Zbl 1456.81231 · doi:10.1088/1742-5468/2009/09/P09018
[23] H. Saleur, A comment on finite temperature correlations in integrable QFT, Nucl. Phys.B 567 (2000) 602 [hep-th/9909019] [INSPIRE]. · Zbl 0951.81067 · doi:10.1016/S0550-3213(99)00665-3
[24] I. Szécsényi, G. Takács and G. Watts, One-point functions in finite volume/temperature: a case study, arXiv:1304.3275 [INSPIRE].
[25] O. Castro-Alvaredo and A. Fring, Finite temperature correlation functions from form-factors, Nucl. Phys.B 636 (2002) 611 [hep-th/0203130] [INSPIRE]. · Zbl 0996.81517 · doi:10.1016/S0550-3213(02)00409-1
[26] B. Pozsgay and G. Takács, Form factor expansion for thermal correlators, J. Stat. Mech.1011 (2010) P11012 [arXiv:1008.3810] [INSPIRE]. · doi:10.1088/1742-5468/2010/11/P11012
[27] B. Pozsgay, Finite volume form factors and correlation functions at finite temperature, arXiv:0907.4306 [INSPIRE]. · Zbl 1190.81129
[28] I. Szecsenyi and G. Takács, Spectral expansion for finite temperature two-point functions and clustering, J. Stat. Mech.12 (2012) P12002 [arXiv:1210.0331] [INSPIRE]. · Zbl 1456.81328 · doi:10.1088/1742-5468/2012/12/P12002
[29] B. Pozsgay and G. Takács, Form-factors in finite volume I: form-factor bootstrap and truncated conformal space, Nucl. Phys.B 788 (2008) 167 [arXiv:0706.1445] [INSPIRE]. · Zbl 1220.81161 · doi:10.1016/j.nuclphysb.2007.06.027
[30] B. Pozsgay, Lüscher’s μ-term and finite volume bootstrap principle for scattering states and form factors, Nucl. Phys.B 802 (2008) 435 [arXiv:0803.4445] [INSPIRE]. · Zbl 1190.81129 · doi:10.1016/j.nuclphysb.2008.04.021
[31] G. Takács, Determining matrix elements and resonance widths from finite volume: the dangerous μ-terms, JHEP11 (2011) 113 [arXiv:1110.2181] [INSPIRE]. · Zbl 1306.81314 · doi:10.1007/JHEP11(2011)113
[32] F.A. Smirnov, Form-factors in completely integrable models of quantum field theory, Adv. Ser. Math. Phys.14 (1992) 1 [INSPIRE]. · Zbl 0788.46077 · doi:10.1142/9789812798312_0001
[33] H.M. Babujian, A. Foerster and M. Karowski, The form factor program: a review and new results: the nested SU(N) off-shell Bethe ansatz, SIGMA2 (2006) 082 [hep-th/0609130] [INSPIRE]. · Zbl 1134.81391
[34] M. Gaudin, La function d’onde de Bethe pour les modèles exacts de la mécanique statistique (in French), Commisariat á l’énergie atomique, Paris France (1983). · Zbl 0509.60093
[35] V. Korepin, N. Bogoliubov and A. Izergin, Quantum inverse scattering method and correlation functions, Cambridge University Press, Cambridge U.K. (1993). · Zbl 0787.47006 · doi:10.1017/CBO9780511628832
[36] T.R. Klassen and E. Melzer, On the relation between scattering amplitudes and finite size mass corrections in QFT, Nucl. Phys.B 362 (1991) 329 [INSPIRE]. · doi:10.1016/0550-3213(91)90566-G
[37] T. Palmai and G. Takács, Diagonal multi-soliton matrix elements in finite volume, Phys. Rev.D 87 (2013) 045010 [arXiv:1209.6034] [INSPIRE].
[38] C.M. Bender and T.T. Wu, Anharmonic oscillator, Phys. Rev.184 (1969) 1231 [INSPIRE]. · doi:10.1103/PhysRev.184.1231
[39] J. Teschner, On the spectrum of the sinh-Gordon model in finite volume, Nucl. Phys.B 799 (2008) 403 [hep-th/0702214] [INSPIRE]. · Zbl 1292.81070 · doi:10.1016/j.nuclphysb.2008.01.021
[40] A. Klümper and P.A. Pearce, Analytic calculation of scaling dimensions: tricritical hard squares and critical hard hexagons, J. Stat. Phys.64 (1991) 13. · Zbl 0935.82514 · doi:10.1007/BF01057867
[41] A. Klümper and P. Pearce, Conformal weights of RSOS lattice models and their fusion hierarchies, PhysicaA 183 (1992) 304 [INSPIRE]. · Zbl 1201.82009
[42] G. Delfino, P. Simonetti and J.L. Cardy, Asymptotic factorization of form-factors in two-dimensional quantum field theory, Phys. Lett.B 387 (1996) 327 [hep-th/9607046] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.