×

Notes on strain gradient plasticity: finite strain covariant modelling and global existence in the infinitesimal rate-independent case. (English) Zbl 1160.74009

Summary: We propose a model of finite strain gradient plasticity including phenomenological Prager-type linear kinematical hardening and nonlocal kinematical hardening due to dislocation interaction. Based on the multiplicative decomposition, a thermodynamically admissible flow rule for \(F_p\) is described involving as plastic gradient Curl \(F_p\). The formulation is covariant with respect to rigid rotations superposed on the reference, intermediate and spatial configurations, but the model is not spin-free due to the nonlocal dislocation interaction and cannot be reduced to a dependence on the plastic metric \(C_p=F_p^TF_p\).
The linearization leads to a thermodynamically admissible model of infinitesimal plasticity involving only the Curl of the nonsymmetric plastic distortion \(p\). Linearized spatial and material covariance under constant infinitesimal rotations is satisfied. Uniqueness of strong solutions of the infinitesimal model is obtained if two nonclassical boundary conditions on the plastic distortion \(p\) are introduced: \(\dot p\cdot\tau=0\) on the microscopically hard boundary \(\Gamma_D\subset\partial\Omega\), and [Curl\(p]\cdot\tau=0\) on the microscopically free boundary \(\partial\Omega\setminus\Gamma_D\), where \(\tau\) are the tangential vectors at the boundary \(\partial\Omega\). A weak reformulation of the infinitesimal model allows for a global in-time solution of the rate-independent initial-boundary value problem. The method is based on a mixed variational inequality with symmetric and coercive bilinear form. We use a new Hilbert space suitable for dislocation density-dependent plasticity.

MSC:

74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74A15 Thermodynamics in solid mechanics
74H20 Existence of solutions of dynamical problems in solid mechanics
74H25 Uniqueness of solutions of dynamical problems in solid mechanics
35Q72 Other PDE from mechanics (MSC2000)
Full Text: DOI

References:

[1] Alber, H. D., Materials with Memory. Initial-Boundary Value Problems for Constitutive Equations with Internal Variables, 1682, 1998, Springer · Zbl 0977.35001
[2] Bertram, A., Int. J. Plasticity52, 353 (1998).
[3] Bertram, A.Svendsen, B., Arch. Mech.53, 653 (2001). · Zbl 1050.74004
[4] Casey, J.Naghdi, P. M., J. Appl. Mech.47, 672 (1980), DOI: 10.1115/1.3153756.
[5] Fleck, N. A.et al., Acta. Metall. Mater.42, 475 (1994).
[6] Gudmundson, P., J. Mech. Phys. Solids52, 1379 (2004), DOI: 10.1016/j.jmps.2003.11.002.
[7] Gupta, A.Steigmann, D. J.Stölken, J. S., Math. Mech. Solids12, 583 (2007), DOI: 10.1177/1081286506064721.
[8] Gurtin, M. E.; Flügge, S., Handbuch der Physik, IVa/2, 1972, Springer · Zbl 0277.73001
[9] Gurtin, M. E., J. Mech. Phys. Solids48, 989 (2000), DOI: 10.1016/S0022-5096(99)00059-9.
[10] Gurtin, M. E.Anand, L., J. Mech. Phys. Solids53, 1624 (2005), DOI: 10.1016/j.jmps.2004.12.008.
[11] Gurtin, M. E.Needleman, A., J. Mech. Phys. Solids53, 1 (2005), DOI: 10.1016/j.jmps.2004.06.006.
[12] Han, W.; Reddy, B. D., Plasticity. Mathematical Theory and Numerical Analysis, 1999, Springer · Zbl 0926.74001
[13] Kröner, E., Z. Phys.142, 463 (1955). · Zbl 0068.40803
[14] Kröner, E.Rieder, G., Z. Phys.145, 424 (1956). · Zbl 0071.23801
[15] Lee, E. H., J. Appl. Mech.36, 1 (1969). · Zbl 0179.55603
[16] Levkovitch, V.Svendsen, B., Int. J. Solids Struct.43, 7246 (2006), DOI: 10.1016/j.ijsolstr.2006.05.010.
[17] Liebe, T.Menzel, A.Steinmann, P., Int. J. Engrg. Sci.41, 1603 (2003), DOI: 10.1016/S0020-7225(03)00030-2.
[18] Lu, J., Z. Angew. Math. Phys.57, 313 (2006), DOI: 10.1007/s00033-005-0010-0.
[19] Lu, J.Papadopoulos, P., Comput. Methods Appl. Mech. Engrg.193, 5339 (2004), DOI: 10.1016/j.cma.2004.01.040.
[20] Marsden, J. E.; Hughes, J. R., Mathematical Foundations of Elasticity, 1983, Prentice-Hall · Zbl 0545.73031
[21] Maugin, G. A., The Thermomechanics of Nonlinear Irreversible Behaviors, 1999, World Scientific · Zbl 0945.80001
[22] Maugin, G. A., J. Non-Equilibrium Thermodyn.15, 173 (1990).
[23] Maugin, G. A.Epstein, M., Int. J. Plasticity14, 109 (1998), DOI: 10.1016/S0749-6419(97)00043-0.
[24] Menzel, A.Steinmann, P., J. Mech. Phys. Solids48, 1777 (2000), DOI: 10.1016/S0022-5096(99)00024-1.
[25] Mielke, A., Comp. Meth. Appl. Mech. Engrg.193, 5095 (2004), DOI: 10.1016/j.cma.2004.07.003.
[26] Mielke, A.Müller, S., Z. Angew. Math. Mech.86, 233 (2006), DOI: 10.1002/zamm.200510245.
[27] Müller, I., Arch. Rational Mech. Anal.26, 118 (1967). · Zbl 0163.46701
[28] Neff, P., Proc. Roy. Soc. Edinb. A136, 997 (2006), DOI: 10.1017/S0308210500004844.
[29] Neff, P., Int. J. Engg. Sci.44, 574 (2006), DOI: 10.1016/j.ijengsci.2006.04.002. · Zbl 1213.74032
[30] Neff, P.Che lmiński, K., Proc. Roy. Soc. Edinb. A135, 1017 (2005), DOI: 10.1017/S030821050000425X. · Zbl 1084.74004
[31] Neff, P.; Che lmiński, K., Quart. Appl. Math.
[32] Neff, P.Che lmiński, K., Appl. Math. Optim.56, 19 (2007), DOI: 10.1007/s00245-007-0878-5.
[33] Neff, P.et al., Math. Mod. Meth. Appl. Sci.17, 1211 (2007), DOI: 10.1142/S021820250700225X.
[34] Neff, P.Münch, I., ESAIM: Control, Optim. Calculus of Variations14, 148 (2008), DOI: 10.1051/cocv:2007050.
[35] Neff, P.Sydow, A.Wieners, C., Int. J. Num. Meth. Engrg.77, 414 (2009), DOI: 10.1002/nme.2420.
[36] Reddy, B. D.Ebobisse, F.McBride, A. T., Int. J. Plasticity24, 55 (2008), DOI: 10.1016/j.ijplas.2007.01.013.
[37] Svendsen, B., J. Mech. Phys. Solids50, 1297 (2002), DOI: 10.1016/S0022-5096(01)00124-7.
[38] Svendsen, B.Bertram, A., Acta Mech.132, 195 (1999), DOI: 10.1007/BF01186967.
[39] Wang, C. C.Bloom, J., Arch. Rational Mech. Anal.53, 246 (1974), DOI: 10.1007/BF00251387. · Zbl 0317.73066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.