×

Selfdecomposability and selfsimilarity: a concise primer. (English) Zbl 1395.60018

Summary: We summarize the relations among three classes of laws: infinitely divisible, selfdecomposable and stable. First we look at them as the solutions of the Central Limit Problem; then their role is scrutinized in relation to the Lévy and the additive processes with an emphasis on stationarity and selfsimilarity. Finally we analyze the Ornstein-Uhlenbeck processes driven by Lévy noises and their selfdecomposable stationary distributions, and we end with a few particular examples.

MSC:

60E07 Infinitely divisible distributions; stable distributions
60G18 Self-similar stochastic processes
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
60-01 Introductory exposition (textbooks, tutorial papers, etc.) pertaining to probability theory

References:

[1] McCauley, J.L.; Gunaratne, G.H.; Bassler, K.A., Hurst exponent, Markov processes and fractional Brownian motion, Physica A, 379, 1, (2007)
[2] Loève, M., Probability theory I, (1977), Springer · Zbl 0359.60001
[3] Loève, M., Probability theory II, (1978), Springer · Zbl 0385.60001
[4] Gnedenko, B.V.; Kolmogorov, A.N., Limit distributions for sums of independent random variables, (1968), Addison-Wesley
[5] Sato, K., Lévy processes and infinitely divisible distributions, (1999), Cambridge University Press · Zbl 0973.60001
[6] N Shiryayev, A., Probability, (1984), Springer
[7] Cont, R.; Tankov, P., Financial modelling with jump processes, (2004), CRC Chapman and Hall · Zbl 1052.91043
[8] Sato, K., Probab. theory related fields, 89, 285, (1991) · Zbl 0725.60034
[9] Carr, P.; Geman, H.; Madan, D.B.; Yor, M., Math. fin., 17, 31, (2007) · Zbl 1278.91157
[10] Cufaro Petroni, N., J phys A, 40, 2227, (2007), also available as arXiv:math.PR/0702058 at http://arxiv.org/
[11] Mandelbrot, B.B.; Van Ness, J.W., SIAM rev., 10, 422, (1968) · Zbl 0179.47801
[12] Y. Hu, B. Øksendal, Fractional white noise calculus and applications to finance, preprint 10/1999 in Pure Mathematics of the Department of Mathematics of the Oslo University; available at http://www.math.uio.no/eprint/pure_math/1999/10-99.html; Y. Hu, B. Øksendal, Fractional white noise calculus and applications to finance, preprint 10/1999 in Pure Mathematics of the Department of Mathematics of the Oslo University; available at http://www.math.uio.no/eprint/pure_math/1999/10-99.html
[13] Protter, Ph. E., Stochastic integration and differential equations, (2005), Springer
[14] Abramowitz, M.; Stegun, I.A., Handbook of mathematical functions, (1968), Dover Publications · Zbl 0515.33001
[15] Lewin, L., Dilogarithms and associated functions, (1958), McDonald · Zbl 0083.35904
[16] Morris, R., Math. comp., 33, 778, (1979) · Zbl 0409.65010
[17] Eberlein, E.; Raible, S., (), 367
[18] S. Raible, Lévy processes in finance: theory, numerics and empirical facts, Ph.D. Thesis, Freiburg University, 2000; S. Raible, Lévy processes in finance: theory, numerics and empirical facts, Ph.D. Thesis, Freiburg University, 2000 · Zbl 0966.60044
[19] Eberlein, E., (), 371
[20] Heyde, C.C.; Leonenko, N.N., Adv. appl. prob., 37, 342, (2005) · Zbl 1081.60035
[21] Madan, D.B.; Seneta, E., J. roy. statist. soc. series B, 49, 163, (1987)
[22] Madan, D.B.; Seneta, E., J. business, 63, 511, (1990)
[23] Madan, D.B.; Milne, F., Math. finance, 1, 4, 39, (1991) · Zbl 0900.90105
[24] Madan, D.B.; Carr, P.P.; Chang, E.C., Euro. finance rev., 2, 79, (1998) · Zbl 0937.91052
[25] Bouchaud, J.-Ph.; Potters, M., Theory of financial risks: from statistical physics to risk management, (2000), Cambridge University Press Cambridge
[26] Mantegna, R.; Stanley, H.E., An introduction to econophysics, (2001), Cambridge University Press Cambridge · Zbl 0974.76002
[27] Cufaro Petroni, N.; De Martino, S.; De Siena, S.; Illuminati, F., Phys. rev. E, 72, 066502, (2005)
[28] Cufaro Petroni, N.; De Martino, S.; De Siena, S.; Illuminati, F., Nucl. instrum. methods A, 561, 237, (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.