×

Well-posedness in critical spaces for a multi-dimensional compressible viscous liquid-gas two-phase flow model. (English) Zbl 1395.35162

Summary: This paper is dedicated to the study of the Cauchy problem for a compressible viscous liquid-gas two-phase flow model in \(\mathbb{R}^N(N\geq2)\). We concentrate on the critical Besov spaces based on the \(L^p\) setting. We improve the range of Lebesgue exponent \(p\), for which the system is locally well-posed, compared to [F. Xu and J. Yuan, Z. Angew. Math. Phys. 66, No. 5, 2395–2417 (2015; Zbl 1327.76154)]. Applying Lagrangian coordinates is the key to our statements, as it enables us to obtain the result by means of Banach fixed point theorem.

MSC:

35Q35 PDEs in connection with fluid mechanics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics

Citations:

Zbl 1327.76154
Full Text: DOI

References:

[1] H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, Springer, Heidelberg, 2011. · Zbl 1227.35004
[2] Q. L. Chen; C. X. Miao; Z. F. Zhang, On the well-posedness for the viscous shallow water equations, SIAM J. Math. Anal., 40, 443-474 (2008) · Zbl 1169.35048 · doi:10.1137/060660552
[3] Q. L. Chen; C. X. Miao; Z. F. Zhang, Well-posedness in critical spaces for the compressible Navier-Stokes equations with density dependent viscosities, Rev. Mat. Iberoam., 26, 915-946 (2010) · Zbl 1205.35189
[4] N. Chikami; R. Danchin, On the well-posedness of the full compressible Navier-Stokes system in critical Besov spaces, J. Differential Equations, 258, 3435-3467 (2015) · Zbl 1311.35185 · doi:10.1016/j.jde.2015.01.012
[5] H. B. Cui; W. J. Wang; L. Yao; C. J. Zhu, Decay rates for a nonconservative compressible generic two-fluid model, SIAM J. Math. Anal., 48, 470-512 (2016) · Zbl 1331.76120 · doi:10.1137/15M1037792
[6] H. B. Cui; H. Y. Wen; H. Y. Yin, Global classical solutions of viscous liquid-gas two-phase flow model, Math. Methods Appl. Sci., 36, 567-583 (2013) · Zbl 1316.76103 · doi:10.1002/mma.2614
[7] R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141, 579-614 (2000) · Zbl 0958.35100 · doi:10.1007/s002220000078
[8] R. Danchin, Lagrangian approach for the compressible Navier-Stokes equations, Ann. Inst. Fourier, 64, 753-791 (2014) · Zbl 1311.35214 · doi:10.5802/aif.2865
[9] R. Danchin; P. B. Mucha, A Lagrangian approach for the incompressible Navier-Stokes equations with variable density, Comm. Pure Appl. Math., 65, 1458-1480 (2012) · Zbl 1247.35088 · doi:10.1002/cpa.21409
[10] R. Danchin, Local theory in critical spaces for compressible viscous and heat-conductive gases, Comm. Partial Differential Equations, 26, 1183-1233 (2001) · Zbl 1007.35071 · doi:10.1081/PDE-100106132
[11] S. Evje; T. Flåtten; H. Friis, Global weak solutions for a viscous liquid-gas model with transition to single-phase gas flow and vacuum, Nonlinear Anal., 70, 3864-3886 (2009) · Zbl 1352.76120 · doi:10.1016/j.na.2008.07.043
[12] S. Evje; K. Karlsen, Global existence of weak solutions for a viscous two-phase model, J. Differential Equations, 245, 2660-2703 (2008) · Zbl 1148.76056 · doi:10.1016/j.jde.2007.10.032
[13] S. Evje; K. Karlsen, Global weak solutions for a viscous liquid-gas model with singular pressure law, Commun. Pure Appl. Anal., 8, 1867-1894 (2009) · Zbl 1175.76143 · doi:10.3934/cpaa.2009.8.1867
[14] C. C. Hao; H. L. Li, Well-posedness for a multidimensional viscous liquid-gas two-phase flow model, SIAM J. Math. Anal., 44, 1304-1332 (2012) · Zbl 1434.76102 · doi:10.1137/110851602
[15] P. B. Mucha, The cauchy problem for the compressible Navier-Stokes equations in the L_p-framework, Nonlinear Anal., 52, 1379-1392 (2003) · Zbl 1048.35065 · doi:10.1016/S0362-546X(02)00270-5
[16] J. Nash, Le probléme de Cauchy pour les équations différentielles d’un fluide général, Bull. Soc. Math. France, 90, 487-497 (1962) · Zbl 0113.19405
[17] A. Prosperetti and G. Tryggvason, Computational Methods for Multiphase Flow, Cambridge University Press, Cambridge, 2009. · Zbl 1166.76004
[18] T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, Volume 3, Walter de Gruyter, Berlin, 1996. · Zbl 0873.35001
[19] A. Valli, An existence theorem for compressible viscous fluids, Ann. Mat. Pura Appl., 130, 197-213 (1982) · Zbl 0599.76081 · doi:10.1007/BF01761495
[20] A. Valli; W. M. Zajaczkowski, Navier-Stokes equations for compressible fluids: Global existence and qualitative properties of the solutions in the general case, Comm. Math. Phys., 103, 259-296 (1986) · Zbl 0611.76082 · doi:10.1007/BF01206939
[21] H. Y. Wen; L. Yao; C. J. Zhu, A blow-up criterion of strong solution to a 3D viscous liquid-gas two-phase flow model with vacuum, J. Math. Pures Appl., 97, 204-229 (2012) · Zbl 1398.76224 · doi:10.1016/j.matpur.2011.09.005
[22] F. Y. Xu; J. Yuan, On the well-posedness for a multi-dimensional compressible viscous liquid-gas two-phase flow model in critical spaces, Z. Angew. Math. Phys., 66, 2395-2417 (2015) · Zbl 1327.76154 · doi:10.1007/s00033-015-0529-7
[23] L. Yao; T. Zhang; C. J. Zhu, Existence and asymptotic behavior of global weak solutions to a 2D viscous liquid-gas two-phase flow model, SIAM J. Math. Anal., 42, 1874-1897 (2010) · Zbl 1430.76460 · doi:10.1137/100785302
[24] L. Yao; T. Zhang; C. J. Zhu, A blow-up criterion for a 2d viscous liquid-gas two-phase flow model, J. Differential Equations, 250, 3362-3378 (2011) · Zbl 1316.76105 · doi:10.1016/j.jde.2010.12.006
[25] L. Yao; C. J. Zhu, Free boundary value problem for a viscous two-phase model with mass-dependent viscosity, J. Differential Equations, 247, 2705-2739 (2009) · Zbl 1228.76180 · doi:10.1016/j.jde.2009.07.013
[26] L. Yao; C. J. Zhu, Existence and uniqueness of global weak solution to a two-phase flow model with vacuum, Math. Ann., 349, 903-928 (2011) · Zbl 1307.35238 · doi:10.1007/s00208-010-0544-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.