×

Decay rates for a nonconservative compressible generic two-fluid model. (English) Zbl 1331.76120

Summary: In this paper, we are concerned with a nonconservative viscous compressible generic two-fluid model in \(\mathbb{R}^3\), which is commonly used in industrial applications. The decay rates of classical solutions are established. Precisely, for any integer \(s\geq 3\), we show that the velocities converge to the equilibrium states at the \(L^2\)-rate \((1+t)^{-\frac{3}{4}}\), and the \(k(\in [1, s-2])\) order spatial derivatives of velocities converge to zero at the \(L^2\)-rate \((1+t)^{-\frac{3}{4}-\frac{k}{2}}\) as the compressible Navier-Stokes system, Navier-Stokes-Korteweg system, etc., but the fraction densities converge to the equilibrium states at the \(L^2\)-rate \((1+t)^{-\frac{1}{4}}\), and the \(k(\in [1, s-1])\) order spatial derivatives of the fraction densities converge to zero at the \(L^2\)-rate \((1+t)^{-\frac{1}{4}-\frac{k}{2}}\), which are slower than the \(L^2\)-rate \((1+t)^{-\frac{3}{4}}\) and \(L^2\)-rate \((1+t)^{-\frac{3}{4}-\frac{k}{2}}\) for the compressible Navier-Stokes system, Navier-Stokes-Korteweg system, etc. See [R. Duan et al., Math. Models Methods Appl. Sci. 17, No. 5, 737–758 (2007; Zbl 1122.35093); T.-P. Liu and W. Wang, Commun. Math. Phys. 196, No. 1, 145–173 (1998; Zbl 0912.35122)] and [Y. Wang and Z. Tan, J. Math. Anal. Appl. 379, No. 1, 256–271 (2011; Zbl 1211.35228)]. This is caused by the structure of the system itself, and we can prove that the convergence rates above are the same as its linearized system. The proof is based on detailed analysis of the Green’s function to the linearized system and on elaborate energy estimates to the nonlinear system.

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
Full Text: DOI

References:

[1] D. Bian, L. Yao, and C. Zhu, {\it Vanishing capillarity limit of the compressible fluid model of Korteweg type to the Navier-Stokes equations}, SIAM J. Math. Anal., 46 (2014), pp. 1633-1650. · Zbl 1304.35531
[2] D. Bresch, B. Desjardins, J.-M. Ghidaglia, and E. Grenier, {\it Global weak solutions to a generic two-fluid model}, Arch. Rational Mech. Anal., 196 (2010), pp. 599-629. · Zbl 1193.35146
[3] D. Bresch, X. D. Huang, and J. Li, {\it Global weak solutions to one-dimensional non-conservative viscous compressible two-phase system}, Comm. Math. Phys., 309 (2012), pp. 737-755. · Zbl 1235.76182
[4] Z. Z. Chen and H. J. Zhao, {\it Existence and nonlinear stability of stationary solutions to the full compressible Navier-Stokes-Korteweg system}, J. Math. Pures Appl., 101 (2014), pp. 330-371. · Zbl 1288.35387
[5] R. Danchin and B. Desjardins, {\it Existence of solutions for compressible fluid models of Korteweg type}, Ann. Inst. H. Poincare Anal. Non Lineaire, 18 (2001), pp. 97-133. · Zbl 1010.76075
[6] K. Deckelnick, {\it Decay estimates for the compressible Navier-Stokes equations in unbounded domains}, Math. Z., 209 (1992), pp. 115-130. · Zbl 0752.35048
[7] K. Deckelnick, {\it \(L^2\)-decay for the compressible Navier-Stokes equations in unbounded domains}, Comm. Partial Differential Equations, 18 (1993), pp. 1445-1476. · Zbl 0798.35124
[8] R. J. Duan, S. Ukai, T. Yang, and H. J. Zhao, {\it Optimal convergence rates for the compressible Navier-Stokes equations with potential forces}, Math. Models Methods Appl. Sci., 17 (2007), pp. 737-758. · Zbl 1122.35093
[9] R. J. Duan, H. X. Liu, S. Ukai, and T. Yang, {\it Optimal \(L^p-L^q\) convergence rate for the compressible Navier-Stokes equations with potential force}, J. Differential Equations, 238 (2007), pp. 220-233. · Zbl 1121.35096
[10] R. J. Duan, {\it Global smooth flows for the compressible Euler-Maxwell system. The relaxation case}, J. Hyperbolic Differ. Equ., 8 (2011), pp. 375-413. · Zbl 1292.76080
[11] R. J. Duan, L. Z. Ruan, and C. J. Zhu, {\it Optimal decay rates to conservation laws with diffusion-type terms of regularity-gain and regularity-loss}, Math. Models Methods Appl. Sci., 22 (2012), pp. 1-39. · Zbl 1241.35133
[12] R. J. Duan, Q. Liu, and C. Zhu, {\it The Cauchy problem on the compressible two-fluids Euler-Maxwell equations}, SIAM J. Math. Anal., 44 (2012), pp. 102-133. · Zbl 1236.35116
[13] Y. Guo, {\it Smooth irrotational flows in the large to the Euler-Poisson system}, Comm. Math. Phys., 195 (1998), pp. 249-265. · Zbl 0929.35112
[14] Y. Guo and Y. J. Wang, {\it Decay of dissipative equations and negative Sobolev spaces}, Comm. Partial Differential Equations, 37 (2012), pp. 2165-2208. · Zbl 1258.35157
[15] B. Haspot, {\it Existence of global weak solution for compressible fluid models of Korteweg type}, J. Math. Fluid Mech., 13 (2011), pp. 223-249. · Zbl 1270.35366
[16] H. Hattori and D. Li, {\it Solutions for two-dimensional system for materials of Korteweg type}, SIAM J. Math. Anal., 25 (1994), pp. 85-98. · Zbl 0817.35076
[17] H. Hattori and D. Li, {\it Global solutions of a high-dimensional system for Korteweg materials}, J. Math. Anal. Appl., 198 (1996), pp. 84-97. · Zbl 0858.35124
[18] H. Hattori and D. Li, {\it The existence of global solutions to a fluid dynamic model for materials for Korteweg type}, J. Partial Differential Equations, 9 (1996), pp. 323-342. · Zbl 0881.35095
[19] D. Hoff and K. Zumbrun, {\it Multidimensional diffusion waves for the Navier-Stokes equations of compressible flow}, Indiana Univ. Math. J., 44 (1995), pp. 604-676. · Zbl 0842.35076
[20] D. Hoff and K. Zumbrun, {\it Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves}, Z. Angew. Math. Phys., 48 (1997), pp. 597-614. · Zbl 0882.76074
[21] M. Ishii, {\it Thermo-Fluid Dynamic Theory of Two-Phase Flow}, Eyrolles, Paris, 1975. · Zbl 0325.76135
[22] Y. Kagei and T. Kobayashi, {\it On large time behavior of solutions to the compressible Navier-Stokes equations in the half space in \({R}^3\)}, Arch. Rational Mech. Anal., 165 (2002), pp. 89-159. · Zbl 1016.35055
[23] Y. Kagei and T. Kobayashi, {\it Asymptotic behavior of solutions to the compressible Navier-Stokes equations on the half space}, Arch. Rational Mech. Anal., 177 (2005), pp. 231-330. · Zbl 1098.76062
[24] Y. Kagei, {\it Large time behavior of solutions to the compressible Navier-Stokes equation in an infinite layer}, Hiroshima Math. J., 38 (2008), pp. 95-124. · Zbl 1151.35072
[25] S. Kawashima, {\it Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics}, Thesis, Kyoto University, Kyoto, 1983.
[26] S. Kawashima, {\it Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications}, Proc. Roy. Soc. Edinburgh, Sect. A, 106 (1987), pp. 169-194. · Zbl 0653.35066
[27] T. Kobayashi, {\it Some estimates of solutions for the equations of motion of compressible viscous fluid in an exterior domain in \({R}^3\)}, J. Differential Equations, 184 (2002), pp. 587-619. · Zbl 1069.35051
[28] T. Kobayashi and Y. Shibata, {\it Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in \(\mathbb{R}^3\)}, Comm. Math. Phys., 200 (1999), pp. 621-659. · Zbl 0921.35092
[29] D. L. Li, {\it The Green¡¯s function of the Navier-Stokes equations for gas dynamics in \(\mathbb{R}^3\)}, Comm. Math. Phys., 257 (2005), pp. 579-619. · Zbl 1075.76053
[30] H. L. Li, A. Matsumura, and G. J. Zhang, {\it Optimal decay rate of the compressible Navier-Stokes-Poisson system in \({R}^3\)}, Arch. Rational Mech. Anal., 96 (2010), pp. 681-713. · Zbl 1205.35201
[31] H. L. Li and T. Zhang, {\it Large time behavior of isentropic compressible Navier-Stokes system in \({R}^3\)}, Math. Methods Appl. Sci., 34 (2011), pp. 670-682. · Zbl 1214.35047
[32] T. P. Liu and W. K. Wang, {\it The pointwise estimates of diffusion waves for the Navier-Stokes equations in odd multi-dimensions}, Comm. Math. Phys., 196 (1998), pp. 145-173. · Zbl 0912.35122
[33] T. P. Liu and Y. N. Zeng, {\it Compressible Navier-Stokes equations with zero heat conductivity}, J. Differential Equations, 153 (1999), pp. 225-291. · Zbl 0922.35117
[34] A. J. Majda and A. L. Bertozzi, {\it Vorticity and Incompressible Flow}, Cambridge University Press, Cambridge, UK, 2002. · Zbl 0983.76001
[35] A. Matsumura and T. Nishida, {\it The initial value problem for the equation of motion of compressible viscous and heat-conductive fluids}, Proc. Japan Acad. Ser. A, 55 (1979), pp. 337-342. · Zbl 0447.76053
[36] A. Matsumura and T. Nishida, {\it The initial value problem for the equation of motion of viscous and heat-conductive gases}, J. Math. Kyoto Univ., 20 (1980), pp. 67-104. · Zbl 0429.76040
[37] A. Matsumura, {\it An Energy Method for the Equations of Motion of Compressible Viscous and Heat-Conductive Fluids}, MRC Technical Summary Report 2194, University of Wisconsin-Madison, Madison, WI, 1981.
[38] G. Ponce, {\it Global existence of small solution to a class of nonlinear evolution equations}, Nonlinear Anal., 9 (1985), pp. 339-418. · Zbl 0576.35023
[39] Y. Shizuta and S. Kawashima, {\it Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation}, Hokkaido Math. J., 14 (1985), pp. 249-275. · Zbl 0587.35046
[40] S. Ukai, T. Yang, and H. J. Zhao, {\it Convergence rate for the compressible Navier-Stokes equations with external force}, J. Hyperbolic Differ. Equ., 3 (2006), pp. 561-574. · Zbl 1184.35251
[41] W. K. Wang and T. Yang, {\it The pointwise estimates of solutions for Euler equations with damping in multi-dimensions}, J. Differential Equations, 173 (2001), pp. 410-450. · Zbl 0997.35039
[42] Y. Wang and Z. Tan, {\it Optimal decay rates for the compressible fluid models of Korteweg type}, J. Math. Anal. Appl., 379 (2011), pp. 256-271. · Zbl 1211.35228
[43] Y. N. Zeng, {\it \(L^1\) asymptotic behavior of compressible isentropic viscous \(1\)-D flow}, Comm. Pure Appl. Math., 47 (1994), pp. 1053-1082. · Zbl 0807.35110
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.