×

The 3-permutation orbifold of a lattice vertex operator algebra. (English) Zbl 1395.17067

The \(3\)-permution orbifold of rank one lattice vertex operator algebras are studied and the quantum dimensions and fusion rules of their irreducible modules are obtained. Additionally, the \(S\)-matrix is given and the irreducible modules are expressed in explicit forms. More generally, this paper is a continuation of a systematic study of permutation orbifolds of lattice vertex operator algebras by the authors. It follows the completion of the \(2\)-permutation case found in [Proc.Am.Math.Soc.144, No.8, 3207–3220 (2016; Zbl 1395.17065)] and [J.Algebra 476, 1–25 (2017; Zbl 1395.17066)]. While many of the techniques and proofs of the \(3\)-permutation case found in this work parallel the authors’ previous two papers, some new aspects are introduced (for example, the \(S\)-matrix calculation) and the analysis is more involved. Due to the authors’ use of known results for the orbifold vertex operator algebra \(V_{\sqrt{2}A_2}^\tau\) where \(\tau\) is an order \(3\) isometry of \(\sqrt{2}A_2\), only this particular \(3\)-orbifold is considered. The paper concludes with tables containing the explicit values of the \(19\times19\) \(S\)-matrix.

MSC:

17B69 Vertex operators; vertex operator algebras and related structures

References:

[1] Abe, T., \(C_2\)-cofiniteness of the 2-cycle permutation orbifold models of minimal Virasoro vertex operator algebras, Commun. Math. Phys., 303, 825-844 (2011) · Zbl 1261.17026
[2] Abe, T., \(C_2\)-cofiniteness of 2-cyclic permutation orbifold models, Commun. Math. Phys., 317, 425-445 (2013) · Zbl 1290.17024
[3] Abe, T.; Buhl, G.; Dong, C., Rationality, regularity and \(C_2\)-cofiniteness, Trans. Am. Math. Soc., 356, 3391-3402 (2004) · Zbl 1070.17011
[4] Abe, T.; Dong, C.; Li, H., Fusion rules for the vertex operator \(M(1)^+\) and \(V_L^+\), Commun. Math. Phys., 253, 171-219 (2005) · Zbl 1207.17032
[5] Bakalov, B.; Kirillov, A., Lectures on Tensor Categories and Modular Functors, Univ. Lect. Ser., vol. 21 (2001), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0965.18002
[6] Bantay, P., Characters and modular properties of permutation orbifolds, Phys. Lett. B, 419, 175-178 (1998) · Zbl 0925.81333
[7] Barron, K.; Dong, C.; Mason, G., Twisted sectors for tensor product vertex operator algebras associated to permutation groups, Commun. Math. Phys., 227, 349-384 (2002) · Zbl 1073.17008
[8] Bakalov, B.; Elsinger, J., Orbifolds of lattice vertex algebras under an isometry of order two, J. Algebra, 441, 57-83 (2015) · Zbl 1376.17039
[9] Borcherds, R. E., Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Natl. Acad. Sci. USA, 83, 3068-3071 (1986) · Zbl 0613.17012
[10] Barron, K.; Huang, Y.-Z.; Lepowsky, J., An equivalence of two constructions of permutation-twisted modules for lattice vertex operator algebras, J. Pure Appl. Algebra, 210, 3, 797-826 (2007) · Zbl 1207.17033
[11] Borisov, L.; Halpern, M. B.; Schweigert, C., Systematic approach to cyclic orbifolds, Int. J. Mod. Phys. A, 13, 125-168 (1998) · Zbl 1002.17014
[12] Chen, H., Fusion rules among irreducible \(V_{\sqrt{2} A_2}^\tau \)-modules of twisted type, Proc. Am. Math. Soc., 143, 3717-3726 (2015) · Zbl 1394.17060
[13] Chen, H.; Lam, C., Quantum dimensions and fusion rules of the VOA \(V_{L_{C \times D}}^\tau \), J. Algebra, 459, 309-349 (2016) · Zbl 1418.17057
[14] Carnahan, S.; Miyamoto, M., Regularity of fixed-point vertex operator subalgebras
[15] Dong, C., Vertex algebras associated with even lattices, J. Algebra, 160, 245-265 (1993) · Zbl 0807.17022
[16] Dong, C.; Jiao, X.; Xu, F., Quantum dimensions and quantum Galois theory, Trans. Am. Math. Soc., 365, 6441-6469 (2013) · Zbl 1337.17018
[17] Dong, C.; Lepowsky, J., Generalized Vertex Algebras and Relative Vertex Operators, Prog. Math., vol. 112 (1993), Birkhauser: Birkhauser Boston · Zbl 0803.17009
[18] Dong, C.; Li, H.; Mason, G., Regularity of rational vertex operator algebras, Adv. Math., 132, 148-166 (1997) · Zbl 0902.17014
[19] Dong, C.; Li, H.; Mason, G., Twisted representations of vertex operator algebras, Math. Ann., 310, 571-600 (1998) · Zbl 0890.17029
[20] Dong, C.; Li, H.; Mason, G., Modular-invariance of trace functions in orbifold theory and generalized Moonshine, Commun. Math. Phys., 214, 1, 1-56 (2000) · Zbl 1061.17025
[21] Dong, C.; Lin, X.; Ng, S. H., Congruence property in conformal field theory, Algebra Number Theory, 9, 2121-2166 (2015) · Zbl 1377.17025
[22] Dong, C.; Mason, G., On quantum Galois theory, Duke Math. J., 86, 305-321 (1997) · Zbl 0890.17031
[23] Dong, C.; Mason, G.; Zhu, Y., Discrete series of the Virasoro algebra and the moonshine module, Proc. Symp. Pure. Math. Amer. Math. Soc., 56, 295-316 (1994) · Zbl 0813.17019
[24] Dong, C.; Ren, L.; Xu, F., On orbifold theory · Zbl 1419.17031
[25] Dong, C.; Xu, F.; Yu, N., 2-cyclic permutations of lattice vertex operator algebras, Proc. Am. Math. Soc., 144, 3207-3220 (2016) · Zbl 1395.17065
[26] Dong, C.; Xu, F.; Yu, N., 2-permutations of lattice vertex operator algebras: higher rank · Zbl 1395.17066
[27] Dong, C.; Yamskulna, G., Vertex operator algebras, generalized doubles and dual pairs, Math. Z., 241, 397-423 (2002) · Zbl 1073.17009
[28] Frenkel, I.; Huang, Y.-Z.; Lepowsky, J., On axiomatic approaches to vertex operator algebras and modules, Mem. Am. Math. Soc., 104 (1993) · Zbl 0789.17022
[29] Frenkel, I. B.; Lepowsky, J.; Meurman, A., Vertex Operator Algebras and the Monster, Pure Appl. Math., vol. 134 (1988), Academic Press: Academic Press Massachusetts · Zbl 0674.17001
[30] Huang, Y., Vertex operator algebras and Verlinde conjecture, Commun. Contemp. Math., 10, 103-154 (2008) · Zbl 1180.17008
[31] Huang, Y., Rigidity and modularity of vertex operator algebras, Commun. Contemp. Math., 10, 871-911 (2008) · Zbl 1169.17019
[32] Huang, Y.; Kirillov, A.; Lepowsky, J., Braided tensor categories and extensions of vertex operator algebras, Commun. Math. Phys., 337, 1143-1159 (2015) · Zbl 1388.17014
[33] Kac, V.; Longo, R.; Xu, F., Solitions in affine and permutation orbifolds, Commun. Math. Phys., 253, 723-764 (2005) · Zbl 1078.81051
[34] Lepowsky, J., Calculus of twisted vertex operators, Proc. Natl. Acad. Sci. USA, 82, 8295-8299 (1985) · Zbl 0579.17010
[35] Lepowsky, J.; Li, H., Introduction to vertex operator algebras and their representations, Progress in Math., 227 (2004) · Zbl 1055.17001
[36] Miyamoto, M., A \(Z_3\)-orbifold theory of lattice vertex operator algebra and \(Z_3\)-orbifold constructions, (Symmetries, Integrable Systems and Representations. Symmetries, Integrable Systems and Representations, Springer Proc. Math. Stat., vol. 40 (2013), Springer: Springer Heidelberg), 319-344 · Zbl 1287.17049
[37] Miyamoto, M., \(C_2\)-cofiniteness of cyclic-orbifold models, Commun. Math. Phys., 335, 1279-1286 (2015) · Zbl 1327.17025
[38] Tanabe, K.; Yamada, H., The fixed point subalgebra of a lattice vertex operator algebra by an automorphism of order three, Pac. J. Math., 230, 469-510 (2007) · Zbl 1207.17036
[39] Tanabe, K.; Yamada, H., Fixed point subalgebras of lattice vertex operator algebras by an automorphism of order three, J. Math. Soc. Jpn., 65, 1169-1242 (2013) · Zbl 1342.17021
[40] Xu, X., Introduction to Vertex Operator Superalgebras and Their Modules, Math. Appl., vol. 456 (1998), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0929.17030
[41] Yamauchi, H., Module categories of simple current extensions of vertex operator algebras, J. Pure Appl. Algebra, 189, 1-3, 315-358 (2004) · Zbl 1052.17017
[42] Zhu, Y., Modular invariance of characters of vertex operator algebras, J. Am. Math. Soc., 9, 237-302 (1996) · Zbl 0854.17034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.