×

Numerical modelling of ion transport in 5-HT3 serotonin receptor using molecular dynamics. (English) Zbl 1394.65048

Dimov, Ivan (ed.) et al., Numerical analysis and its applications. 6th international conference, NAA 2016, Lozenetz, Bulgaria, June 15–22, 2016. Revised selected papers. Cham: Springer (ISBN 978-3-319-57098-3/pbk; 978-3-319-57099-0/ebook). Lecture Notes in Computer Science 10187, 195-202 (2017).
Summary: Cation selective ligand-gated ion channels are pore-forming membrane proteins. They are responsible for generating of transmembrane voltage and action potential, playing an important role in functioning of nervous systems. Mathematical modelling of transmembrane transport in membrane and membrane/protein structures using molecular dynamics (MD) method is often associated with difficulties, because it is nearly impossible to observe spontaneous diffusion in MD experiments. In this work molecular dynamics (MD) and umbrella sampling (US) methods are used to study ion transport through 5-HT3 Serotonin receptor.
For the entire collection see [Zbl 1360.65014].

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
92-08 Computational methods for problems pertaining to biology
92C37 Cell biology

Software:

Gromacs
Full Text: DOI

References:

[1] Jegla, T.J., Zmasek, C.M., Batalov, S., Nayak, S.K.: Evolution of the human ion channel set. Comb. Chem. High Throughput Screen 12(1), 2–23 (2009) · doi:10.2174/138620709787047957
[2] Kullmann, D.M., Hanna, M.G.: Neurological disorders caused by inherited ion-channel mutations. Lancet Neurol. 1(3), 157–166 (2002) · doi:10.1016/S1474-4422(02)00071-6
[3] Overington, J.P., Al-Lazikani, B., Hopkins, A.L.: How many drug targets are there? Nat. Rev. Drug Discov. 5(12), 993–996 (2006) · doi:10.1038/nrd2199
[4] Hopkins, A.L., Groom, C.R.: The druggable genome. Nat. Rev. Drug Discov. 1(9), 727–730 (2002) · doi:10.1038/nrd892
[5] Wickenden, A., Priest, B., Erdemli, G.: Ion channel drug discovery: challenges and future directions. Future Med. Chem. 4(5), 661–679 (2012) · doi:10.4155/fmc.12.4
[6] Hassaine, G., Deluz, C., Grasso, L., Wyss, R., Tol, M.B., Hovius, R., Graff, A., Stahlberg, H., Tomizaki, T., Desmyter, A., Moreau, C., Li, X.D., Poitevin, F., Vogel, H., Nury, H.: X-ray structure of the mouse serotonin 5-HT3 receptor. Nature 512, 276–281 (2014) · doi:10.1038/nature13552
[7] Popinako, A.V., Levtsova, O.V., Antonov, MYu., Nikolaev, I.N., Shaitan, K.V.: The structural and dynamic model of the serotonin 5-HT3 receptor. Comparative analysis of the structure of the channel domain of pentameric ligand-gated ion channels. Biofizika 56(6), 1111–1116 (2011)
[8] Pischalnikova, A.V., Sokolova, O.S.: The domain and conformational organization in potassium voltage-gated ion channels. J. Neuroimmune Pharmacol. 4(1), 71–82 (2009) · doi:10.1007/s11481-008-9130-6
[9] Kastner, J.: Umbrella sampling. Wiley Interdiscip. Rev. Comput. Mol. Sci. 1(6), 932–942 (2011) · doi:10.1002/wcms.66
[10] Torrie, G.M., Valleau, J.P.: Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 23(2), 187–199 (1977) · doi:10.1016/0021-9991(77)90121-8
[11] Kumar, S., Rosenberg, J.M., Bouzida, D., Swendsen, R.H., Kollman, P.A.: The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 13(8), 1011–1021 (1992) · doi:10.1002/jcc.540130812
[12] Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4(3), 435–447 (2008) · doi:10.1021/ct700301q
[13] Oostenbrink, C., Villa, A., Mark, A.E., van Gunsteren, W.F.: A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 25(13), 1656–1676 (2004) · doi:10.1002/jcc.20090
[14] Tieleman, D.P., Forrest, L.R., Sansom, M.S., Berendsen, H.J.: Lipid properties and the orientation of aromatic residues in OmpF, inuenza M2, and alamethicin systems: molecular dynamics simulations. Biochemistry 37(50), 17554–17561 (1998) · doi:10.1021/bi981802y
[15] Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79(2), 926 (1983) · doi:10.1063/1.445869
[16] Berman, H.M.: The protein data bank: a historical perspective. Acta Crystallogr. A 64(Pt 1), 88–95 (2008) · doi:10.1107/S0108767307035623
[17] Schmidt, T.H., Kandt, C.: LAMBADA and InflateGRO2: efficient membrane alignment and insertion of membrane proteins for molecular dynamics simulations. J. Chem. Inf. Model. 52(10), 2657–2669 (2012) · doi:10.1021/ci3000453
[18] Lague, P., Zuckermann, M.J., Roux, B.: Lipid-mediated interactions between intrinsic membrane proteins: dependence on protein size and lipid composition. Biophys. J. 81(1), 276–284 (2001) · doi:10.1016/S0006-3495(01)75698-6
[19] Nagle, J.F.: Area/lipid of bilayers from NMR. Biophys. J. 64(5), 1476–1481 (1993) · doi:10.1016/S0006-3495(93)81514-5
[20] Shaitan, K.V., Antonov, M.Y., Tourleigh, Y.V., Levtsova, O.V., Tereshkina, K.B., Nikolaev, I.N., Kirpichnikov, M.P.: Comparative study of molecular dynamics, diffusion, and permeability for ligands in biomembranes of different lipid composition. Biochem. Suppl. Ser. A. Membr. Cell Biol. 2, 73–81 (2008)
[21] Braganza, L.F., Worcester, D.L.: Structural changes in lipid bilayers and biological membranes caused by hydrostatic pressure. Biochemistry 25(23), 7484–7488 (1986) · doi:10.1021/bi00371a034
[22] Popinako, A.V., Levtsova, O.V., Antonov, M.Y., Nikolaev, I.N., Shaitan, K.V.: The structural and dynamic model of the serotonin 5-HT3 receptor. Comparative analysis of the structure of the channel domain of pentameric ligand-gated ion channels. Biophysics 56(6), 1078–1082 (2011) · doi:10.1134/S0006350911060157
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.