Skip to main content

Numerical Modelling of Ion Transport in 5-HT3 Serotonin Receptor Using Molecular Dynamics

  • Conference paper
  • First Online:
Numerical Analysis and Its Applications (NAA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10187))

Included in the following conference series:

  • 1862 Accesses

Abstract

Cation selective ligand-gated ion channels are pore-forming membrane proteins. They are responsible for generating of transmembrane voltage and action potential, playing an important role in functioning of nervous systems. Mathematical modelling of transmembrane transport in membrane and membrane/protein structures using molecular dynamics (MD) method is often associated with difficulties, because it is nearly impossible to observe spontaneous diffusion in MD experiments. In this work Molecular Dynamics (MD) and Umbrella Sampling (US) methods are used to study ion transport through 5-HT3 Serotonin receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 39.99
Price excludes VAT (USA)
Softcover Book
USD 54.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jegla, T.J., Zmasek, C.M., Batalov, S., Nayak, S.K.: Evolution of the human ion channel set. Comb. Chem. High Throughput Screen 12(1), 2–23 (2009)

    Article  Google Scholar 

  2. Kullmann, D.M., Hanna, M.G.: Neurological disorders caused by inherited ion-channel mutations. Lancet Neurol. 1(3), 157–166 (2002)

    Article  Google Scholar 

  3. Overington, J.P., Al-Lazikani, B., Hopkins, A.L.: How many drug targets are there? Nat. Rev. Drug Discov. 5(12), 993–996 (2006)

    Article  Google Scholar 

  4. Hopkins, A.L., Groom, C.R.: The druggable genome. Nat. Rev. Drug Discov. 1(9), 727–730 (2002)

    Article  Google Scholar 

  5. Wickenden, A., Priest, B., Erdemli, G.: Ion channel drug discovery: challenges and future directions. Future Med. Chem. 4(5), 661–679 (2012)

    Article  Google Scholar 

  6. Hassaine, G., Deluz, C., Grasso, L., Wyss, R., Tol, M.B., Hovius, R., Graff, A., Stahlberg, H., Tomizaki, T., Desmyter, A., Moreau, C., Li, X.D., Poitevin, F., Vogel, H., Nury, H.: X-ray structure of the mouse serotonin 5-HT3 receptor. Nature 512, 276–281 (2014)

    Article  Google Scholar 

  7. Popinako, A.V., Levtsova, O.V., Antonov, MYu., Nikolaev, I.N., Shaitan, K.V.: The structural and dynamic model of the serotonin 5-HT3 receptor. Comparative analysis of the structure of the channel domain of pentameric ligand-gated ion channels. Biofizika 56(6), 1111–1116 (2011)

    Google Scholar 

  8. Pischalnikova, A.V., Sokolova, O.S.: The domain and conformational organization in potassium voltage-gated ion channels. J. Neuroimmune Pharmacol. 4(1), 71–82 (2009)

    Article  Google Scholar 

  9. Kastner, J.: Umbrella sampling. Wiley Interdiscip. Rev. Comput. Mol. Sci. 1(6), 932–942 (2011)

    Article  Google Scholar 

  10. Torrie, G.M., Valleau, J.P.: Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 23(2), 187–199 (1977)

    Article  Google Scholar 

  11. Kumar, S., Rosenberg, J.M., Bouzida, D., Swendsen, R.H., Kollman, P.A.: The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 13(8), 1011–1021 (1992)

    Article  Google Scholar 

  12. Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4(3), 435–447 (2008)

    Article  Google Scholar 

  13. Oostenbrink, C., Villa, A., Mark, A.E., van Gunsteren, W.F.: A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 25(13), 1656–1676 (2004)

    Article  Google Scholar 

  14. Tieleman, D.P., Forrest, L.R., Sansom, M.S., Berendsen, H.J.: Lipid properties and the orientation of aromatic residues in OmpF, inuenza M2, and alamethicin systems: molecular dynamics simulations. Biochemistry 37(50), 17554–17561 (1998)

    Article  Google Scholar 

  15. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79(2), 926 (1983)

    Article  Google Scholar 

  16. Berman, H.M.: The protein data bank: a historical perspective. Acta Crystallogr. A 64(Pt 1), 88–95 (2008)

    Article  Google Scholar 

  17. Schmidt, T.H., Kandt, C.: LAMBADA and InflateGRO2: efficient membrane alignment and insertion of membrane proteins for molecular dynamics simulations. J. Chem. Inf. Model. 52(10), 2657–2669 (2012)

    Article  Google Scholar 

  18. Lague, P., Zuckermann, M.J., Roux, B.: Lipid-mediated interactions between intrinsic membrane proteins: dependence on protein size and lipid composition. Biophys. J. 81(1), 276–284 (2001)

    Article  Google Scholar 

  19. Nagle, J.F.: Area/lipid of bilayers from NMR. Biophys. J. 64(5), 1476–1481 (1993)

    Article  Google Scholar 

  20. Shaitan, K.V., Antonov, M.Y., Tourleigh, Y.V., Levtsova, O.V., Tereshkina, K.B., Nikolaev, I.N., Kirpichnikov, M.P.: Comparative study of molecular dynamics, diffusion, and permeability for ligands in biomembranes of different lipid composition. Biochem. Suppl. Ser. A. Membr. Cell Biol. 2, 73–81 (2008)

    Google Scholar 

  21. Braganza, L.F., Worcester, D.L.: Structural changes in lipid bilayers and biological membranes caused by hydrostatic pressure. Biochemistry 25(23), 7484–7488 (1986)

    Article  Google Scholar 

  22. Popinako, A.V., Levtsova, O.V., Antonov, M.Y., Nikolaev, I.N., Shaitan, K.V.: The structural and dynamic model of the serotonin 5-HT3 receptor. Comparative analysis of the structure of the channel domain of pentameric ligand-gated ion channels. Biophysics 56(6), 1078–1082 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Antonov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Antonov, M.Y., Popinako, A.V., Prokopiev, G.A., Vasilyev, A.O. (2017). Numerical Modelling of Ion Transport in 5-HT3 Serotonin Receptor Using Molecular Dynamics. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Numerical Analysis and Its Applications. NAA 2016. Lecture Notes in Computer Science(), vol 10187. Springer, Cham. https://doi.org/10.1007/978-3-319-57099-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57099-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57098-3

  • Online ISBN: 978-3-319-57099-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics