×

Response of an oscillatory differential delay equation to a single stimulus. (English) Zbl 1393.92009

The paper devoted to the regulation of the production of blood cells. By using denotation \(x(t)\) and reduction to the barest of descriptions it can be described most simply by a differential delay equation of the following form \[ \frac{dx}{dt} = -\gamma x(t) + f(x(t - \tau)) \] with constant \(\gamma > 0\), where \(f: \mathbb{R} \rightarrow \mathbb{R}\) is monotone decreasing. In this work, the nonlinearity \(f\) is replaced by a piecewise constant function which permits to compute solutions explicitly and to analytically study their behaviour. The response of the solutions to perturbation means to represent the effect of cytokine administration.
The goal of this paper is to study the effect of such a perturbation on the solution of a given equation. At first, the authors describe the model and formulate it in a mathematically convenient form providing required basic facts. Then they introduce the pulse-like perturbations (a perturbation of constant amplitude lasting for a finite period of time) of the model which correspond to the effect of medication in the sense that during a finite time interval the production of blood cells is increased. It is shown that the response of the system to such perturbations is continuous provided the latter are not too large. This includes a continuity result for the cycle length map, which assigns to each onset time of increased production a time of return to the periodic orbit, after the end of increased production. The bulk of derived results are presented in Section 5 where the authors examine the effect of cytokine perturbation when the perturbation away from the stable periodic orbit begins at different points in the cycle. In particular, they look at phase resetting properties of the system (in terms of the cycle length map) and at the minima and maxima compared to the amplitudes of the periodic solution. It is presented how the derived results may be potentially used to tailor therapy to achieve certain results. Finally, there is a simple extension in which a pulse-like perturbation may decrease the nadir of the limit cycle as is noted clinically.

MSC:

92C37 Cell biology
92B25 Biological rhythms and synchronization
34K27 Perturbations of functional-differential equations
34C07 Theory of limit cycles of polynomial and analytic vector fields (existence, uniqueness, bounds, Hilbert’s 16th problem and ramifications) for ordinary differential equations
92C50 Medical applications (general)

References:

[1] Aapro MS, Bohlius J, Cameron DA, Dal Lago L, Donnelly JP, Kearney N, Lyman GH, Pettengell R, Tjan-Heijnen VC, Walewski J, Weber DC, Zielinski C (2011) 2010 update of EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphoproliferative disorders and solid tumours. Eur J Cancer 47(1):8-32 · doi:10.1016/j.ejca.2010.10.013
[2] Andersen H, Johnsson A (1972a) Entrainment of geotropic oscillations in hypocotyls of helianthus annuus- an experimental and theoretical investigation. Physiol Plant 26(1):52-61 · doi:10.1111/j.1399-3054.1972.tb03545.x
[3] Andersen H, Johnsson A (1972b) Entrainment of geotropic oscillations in hypocotyls of heliunthus annuus- an experimental and theoretical investigation. Physiol Plant 26(1):44-51 · doi:10.1111/j.1399-3054.1972.tb03544.x
[4] Apostu R, Mackey MC (2008) Understanding cyclical thrombocytopenia: a mathematical modeling approach. J Theor Biol 251:297-316 · Zbl 1398.92107 · doi:10.1016/j.jtbi.2007.11.029
[5] Barni S, Lorusso V, Giordano M, Sogno G, Gamucci T, Santoro A, Passalacqua R, Iaffaioli V, Zilembo N, Mencoboni M, Roselli M, Pappagallo G, Pronzato P (2014) A prospective observational study to evaluate G-CSF usage in patients with solid tumors receiving myelosuppressive chemotherapy in Italian clinical oncology practice. Med Oncol 31(1):797 · doi:10.1007/s12032-013-0797-z
[6] Bennett C, Weeks J, Somerfield MR, Feinglass J, Smith TJ (1999) Use of hematopoietic colony-stimulating factors: Comparison of the 1994 and 1997 American Society of Clinical Oncology surveys regarding ASCO clinical practice guidelines. Health Services Research Committee of the American Society of Clinical Oncology. J Clin Oncol 17:3676-3681
[7] Bodnar M, Foryś U, Piotrowska MJ (2013a) Logistic type equations with discrete delay and quasi-periodic suppression rate. Appl Math Lett 26(6):607-611 · Zbl 1261.92044 · doi:10.1016/j.aml.2012.12.023
[8] Bodnar M, Piotrowska MJ, Foryś U (2013b) Existence and stability of oscillating solutions for a class of delay differential equations. Nonlinear Anal Real World Appl 14(3):1780-1794 · Zbl 1280.34071 · doi:10.1016/j.nonrwa.2012.11.010
[9] Bodnar M, Piotrowska MJ, Foryś U (2013c) Gompertz model with delays and treatment: mathematical analysis. Math Biosci Eng 10(3):551-563 · Zbl 1268.92056 · doi:10.3934/mbe.2013.10.551
[10] Canavier CC, Achuthan S (2010) Pulse coupled oscillators and the phase resetting curve. Math Biosci 226(2):77-96 · Zbl 1194.92009 · doi:10.1016/j.mbs.2010.05.001
[11] Clark O, Lyman G, Castro A, Clark L, Djulbegovic B (2005) Colony-stimulating factors for chemotherapy-induced febrile neutropenia: a meta-analysis of randomized controlled trials. J Clin Oncol 23:4198-4214 · doi:10.1200/JCO.2005.05.645
[12] Colijn C, Mackey M (2005) A mathematical model of hematopoiesis: I. Periodic chronic myelogenous leukemia. J Theor Biol 237:117-132 · Zbl 1440.92024 · doi:10.1016/j.jtbi.2005.03.033
[13] Colijn C, Dale DC, Foley C, Mackey MC (2006) Observations on the pathophysiology and mechanisms for cyclic neutropenia. Math Model Natur Phenom 1(2):45-69 · Zbl 1337.92104
[14] Colijn C, Foley C, Mackey MC (2007) G-CSF treatment of canine cyclical neutropenia: A comprehensive mathematical model. Exper Hematol 35:898-907 · doi:10.1016/j.exphem.2007.02.015
[15] Dale D, Bonilla M, Davis M, Nakanishi A, Hammond W, Kurtzberg J, Wang W, Jakubowski A, Winton E, Lalezari P, Robinson W, Glaspy J, Emerson S, Gabrilove J, Vincent M, Boxer L (1993) A randomized controlled phase iii trial of recombinant human granulocyte colony stimulating factor (filgrastim) for treatment of severe chronic neutropenia. Blood 81:2496-2502
[16] Dale DC, Hammond WP (1988) Cyclic neutropenia: a clinical review. Blood Rev 2:178-185 · doi:10.1016/0268-960X(88)90023-9
[17] Dale DC, Mackey MC (2015) Understanding, treating and avoiding hematological disease: better medicine through mathematics? Bull Math Biol 77(5):739-757 · Zbl 1334.92194 · doi:10.1007/s11538-014-9995-x
[18] Dale DC, Cottle CJ, Fier CJ, Bolyard AA, Bonilla MA, Boxer LA, Cham B, Freedman MH, Kannourakis G, Kinsey SE, Davis R, Scarlata D, Schwinzer B, Zeidler C, Welte K (2003) Severe chronic neutropenia: treatment and follow-up of patients in the severe chronic neutropenia international registry. Am J Hematol 72:82-93
[19] Diekmann O, van Gils SA, Verduyn Lunel SM, Walther HO (1995) Delay equations. Functional, complex, and nonlinear analysis, Applied Mathematical Sciences, vol 110. Springer, New York · Zbl 0826.34002
[20] Doi M, Ishida A, Miyake A, Sato M, Komatsu R, Yamazaki F, Kimura I, Tsuchiya S, Kori H, Seo K, Yamaguchi Y, Matsuo M, Fustin JM, Tanaka R, Santo Y, Yamada H, Takahashi Y, Araki M, Nakao K, Aizawa S, Kobayashi M, Obrietan K, Tsujimoto G, Okamura H (2011) Circadian regulation of intracellular G-protein signalling mediates intercellular synchrony and rhythmicity in the suprachiasmatic nucleus. Nat Commun 2:327
[21] Foley C, Mackey MC (2009) Dynamic hematological disease: a review. J Math Biol 58:285-322 · Zbl 1161.92338 · doi:10.1007/s00285-008-0165-3
[22] Fortin P, Mackey M (1999) Periodic chronic myelogenous leukemia: spectral analysis of blood cell counts and etiological implications. Br J Haematol 104:245-336 · doi:10.1046/j.1365-2141.1999.01168.x
[23] Foryś U, Poleszczuk J, Liu T (2014) Logistic tumor growth with delay and impulsive treatment. Math Popul Stud 21(3):146-158 · Zbl 1409.92114 · doi:10.1080/08898480.2013.804688
[24] Glass L, Mackey MC (1988) From clocks to chaos: the rhythms of life. Princeton University Press, Princeton, NJ · Zbl 0705.92004
[25] Glass L, Winfree AT (1984) Discontinuities in phase-resetting experiments. Am J Physiol 246(2 Pt 2):R251-R258
[26] Guevara MR, Glass L (1982) Phase locking, periodic doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: a theory for the entrainment of biological oscillators. J Math Biol 14:1-23 · Zbl 0489.92007 · doi:10.1007/BF02154750
[27] Haurie C, Mackey MC, Dale DC (1998) Cyclical neutropenia and other periodic hematological diseases: a review of mechanisms and mathematical models. Blood 92:2629-2640
[28] Horikawa K, Ishimatsu K, Yoshimoto E, Kondo S, Takeda H (2006) Noise-resistant and synchronized oscillation of the segmentation clock. Nature 441:719-723 · doi:10.1038/nature04861
[29] Israelsson D, Johnsson A (1967) A theory for circumnutations in helianthus annuus. Physiol Plant 20(4):957-976 · doi:10.1111/j.1399-3054.1967.tb08383.x
[30] Johnsson A (1971) Geotropic responses in helianthus and their dependence on the auxin ratio—with a refined mathematical description of the course of geotropic movements. Physiol Plant 24(3):419-425 · doi:10.1111/j.1399-3054.1971.tb03514.x
[31] Johnsson A, Israelsson D (1968) Application of a theory for circumnutations to geotropic movements. Physiol Plant 21(2):282-291 · doi:10.1111/j.1399-3054.1968.tb07251.x
[32] Klinshov V, Nekorkin V (2011) Synchronization of time-delay coupled pulse oscillators. Chaos Solitons Fractals 44(1-3):98-107 · doi:10.1016/j.chaos.2010.12.007
[33] Klinshov V, Lücken L, Shchapin D, Nekorkin V, Yanchuk S (2015) Multistable jittering in oscillators with pulsatile delayed feedback. Phys Rev Lett 114(178):103
[34] Kotani K, Yamaguchi I, Ogawa Y, Jimbo Y, Hakao H, Ermentrout G (2012) Adjoint method provides phase response functions for delay-induced oscillations. Phys Rev Lett 109:044101
[35] Krinner A, Roeder I, Loeffler M, Scholz M (2013) Merging concepts—coupling an agent-based model of hematopoietic stem cells with an ODE model of granulopoiesis. BMC Syst Biol 7:117 · doi:10.1186/1752-0509-7-117
[36] Krogh-Madsen T, Glass L, Doedel EJ, Guevara MR (2004) Apparent discontinuities in the phase-resetting response of cardiac pacemakers. J Theor Biol 230(4):499-519 · Zbl 1447.92199 · doi:10.1016/j.jtbi.2004.03.027
[37] Lewis J (2003) Autoinhibition with transcriptional delay: A simple mechanism for the zebrafish somitogenesis oscillator. Curr Biol 13(16):1398-1408 · doi:10.1016/S0960-9822(03)00534-7
[38] Mackey MC (1979) Periodic auto-immune hemolytic anemia: an induced dynamical disease. Bull Math Biol 41:829-834 · Zbl 0414.92012 · doi:10.1007/BF02462379
[39] Mallet-Paret J, Walther HO (1994) Rapid oscillations are rare in scalar systems governed by monotone negative feedback with a time lag · Zbl 0414.92012
[40] Milton JG, Mackey MC (1989) Periodic haematological diseases: mystical entities or dynamical disorders? J R Coll Phys (Lond) 23:236-241
[41] Munoz Langa J, Gascon P, de Castro J (2012) SEOM clinical guidelines for myeloid growth factors. Clin Transl Oncol 14(7):491-498 · doi:10.1007/s12094-012-0830-2
[42] Novicenko V, Pyragas K (2012) Phase reduction of weakly perturbed limit cycle oscillations in time-delay systems. Phys D 241(12):1090-1098 · Zbl 1255.34069 · doi:10.1016/j.physd.2012.03.001
[43] Palumbo A, Blade J, Boccadoro M, Palladino C, Davies F, Dimopoulos M, Dmoszynska A, Einsele H, Moreau P, Sezer O, Spencer A, Sonneveld P, San Miguel J (2012) How to manage neutropenia in multiple myeloma. Clin Lymphoma Myeloma Leuk 12(1):5-11 · doi:10.1016/j.clml.2011.11.001
[44] Piotrowska MJ, Bodnar M (2014) Logistic equation with treatment function and discrete delays. Math Popul Stud 21(3):166-183 · Zbl 1409.92122 · doi:10.1080/08898480.2014.921492
[45] Swinburne J, Mackey M (2000) Cyclical thrombocytopenia: characterization by spectral analysis and a review. J Theor Med 2:81-91 · Zbl 0943.92023 · doi:10.1080/10273660008833039
[46] Walther HO (2014) Topics in delay differential equations. Jahresber Dtsch Math-Ver 116(2):87-114 · Zbl 1295.34003 · doi:10.1365/s13291-014-0086-6
[47] Winfree AT (1980) The geometry of biological time, Biomathematics, vol 8. Springer, Berlin · Zbl 0464.92001 · doi:10.1007/978-3-662-22492-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.