×

Logistic equation with treatment function and discrete delays. (English) Zbl 1409.92122

Summary: The logistic equation with a periodic or asymptotically periodic treatment has a delay either in the per head growth rate or in the net growth rate. When the treatment is constant over time, there exists at most one supercritical Hopf bifurcation for some critical value of the delay. We provide conditions that guarantee the global stability of the trivial steady state when the treatment is an asymptotically periodic function. For the single delayed model and asymptotically periodic drug administration, these are necessary and sufficient conditions. For the double delayed model, given conditions are only sufficient. Simulations for a pharmacokinetic treatment with various periods of drug administration show that the double delayed model is more sensitive than the single delayed model on drug dosage and on the starting time of treatment.

MSC:

92C50 Medical applications (general)
34C23 Bifurcation theory for ordinary differential equations
Full Text: DOI

References:

[1] Bodnar , M. ( 2000 ). The nonnegativity of the solutions of delay differential equations . Applied Mathematics Letters , 13 ( 6 ): 91 - 95 . · Zbl 0958.34049
[2] Bodnar , M. and Foryś , U. ( 2007 ). Three types of simple DDE’s describing tumor growth . Journal of Biological Systems , 15 ( 4 ): 1 - 19 . · Zbl 1151.92015
[3] Bodnar , M. , Foryś , U. , and Piotrowska , M. J. ( 2013 ). Logistic type equations with discrete delay and quasi-periodic suppression rate . Applied Mathematics Letters , 26 ( 6 ): 607 - 611 . · Zbl 1261.92044
[4] Bodnar , M. , Piotrowska , M. J. , and Foryś , U. ( 2013 ). Existence and stability of oscillating solutions for a class of delay differential equations . Nonlinear Analysis Series B: Real World Applications , 14 ( 3 ): 1780 - 1794 . · Zbl 1280.34071
[5] Foryś , U. ( 2004 ). Global stability for a class of delay differential equations . Applied Mathematics Letters , 17 ( 5 ): 581 - 584 . · Zbl 1064.34061
[6] Hale , J. and Lunel , S. ( 1993 ). Introduction to Functional Differential Equations . New York : Springer . · Zbl 0787.34002
[7] Hassard , B. D. , Kazarinoff , N. D. , and Wan , Y.-H. ( 1981 ). Theory and Applications of Hopf Bifurcation . Cambridge : Cambridge University Press . · Zbl 0474.34002
[8] Hayes , N. D. (1950). Roots of the transcendental equation associated with a certain difference-differential equation. Journal of the London Mathematical Society , 25(3): 226-232. · Zbl 0038.24102
[9] Hutchinson , G. E. ( 1948 ). Circular casual systems in ecology . Annals of the New York Academy of Sciences , 50 : 221 - 246 .
[10] Jones , G. ( 1962a ). The existence of periodic solutions of f′(x) = −αf(x − 1){1 + f(x)} . Journal of Mathematical Analysis and Applications , 5 ( 3 ): 435 - 450 . · Zbl 0106.29504
[11] Jones , G. ( 1962b ). On the nonlinear differential-difference equation f′(x) = −αf(x − 1){1 + f(x)} . Journal of Mathematical Analysis and Applications , 4 ( 3 ): 440 - 469 . · Zbl 0106.29503
[12] Kaplan , J. and Yorke , J. ( 1975 ). On the stability of a periodic solution of a differential delay equation . SIAM Journal on Mathematical Analysis , 6 ( 2 ): 268 - 282 . · Zbl 0241.34080
[13] Kaplan , J. L. and Yorke , J. A. ( 1977 ). On the nonlinear differential delay equation x′(t) = −f(x(t), x(t − 1)) . Journal of Differential Equations , 23 ( 2 ): 293 - 314 . · Zbl 0307.34070
[14] Kuang , Y. ( 1993 ). Delay Differential Equations with Applications in Population Dynamics . London : Academic Press . · Zbl 0777.34002
[15] Lessard , J.-P. ( 2010 ). Recent advances about the uniqueness of the slowly oscillating periodic solutions of Wright’s equation . Journal of Differential Equations , 248 ( 5 ): 992 - 1016 . · Zbl 1200.34078
[16] Maynard Smith , J. ( 1968 ). Mathematical Ideas in Biology . London : Cambridge University Press .
[17] Perez , J. F. , Malta , C. P. , and Coutinho , F. A. B. ( 1978 ). Qualitative analysis of oscillations in isolated populations of flies . Journal of Theoretical Biology , 71 ( 4 ): 505 - 514 .
[18] Schuster , R. and Schuster , H. ( 1995 ). Reconstruction models for the Ehrlich Ascites tumor for the mouse . In O. Arino , D. Axelrod , M. Kimmel (Eds.), Mathematical Population Dynamics . Winnipeg : Wuertz , 335 - 348 .
[19] Taylor , C. E. and Sokal , R. R. ( 1976 ). Oscillations in housefly population sizes due to time lags . Ecology , 57 ( 5 ): 1060 - 1067 .
[20] Walther , H. O. ( 1995 ). The 2-dimensional attractor of x′(t) = −μx + f(x(t − 1)) . American Mathematical Society , 113 ( 544 ): 1 - 63 . · Zbl 0829.34063
[21] Wright , E. ( 1955 ). A non-linear difference-differential equation . Journal für die Reine und Angewandte Mathematik , 194 : 66 - 87 . · Zbl 0064.34203
[22] Wright , E. ( 1960 ). A functional equation in the heuristic theory of primes . The Mathematical Gazette , 44 : 15 - 16 . · Zbl 0125.02602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.