×

Stochastic homogenization of plasticity equations. (English) Zbl 1393.74014

Summary: In the context of infinitesimal strain plasticity with hardening, we derive a stochastic homogenization result. We assume that the coefficients of the equation are random functions: elasticity tensor, hardening parameter and flow-rule function are given through a dynamical system on a probability space. A parameter \(\varepsilon > 0\) denotes the typical length scale of oscillations. We derive effective equations that describe the behavior of solutions in the limit \(\varepsilon\to 0\). The homogenization procedure is based on the fact that stochastic coefficients “allow averaging”: For one representative volume element, a strain evolution \([0,T]\ni t \mapsto \xi(t)\in \mathbb{R}^{d\times d}_s\) induces a stress evolution \([0,T]\ni t \mapsto \varSigma(\xi)(t)\in \mathbb{R}^{d\times d}_s\). Once the hysteretic evolution law \(\varSigma\) is justified for averages, we obtain that the macroscopic limit equation is given by \(-\nabla \cdot \varSigma(\nabla^s u) = f\).

MSC:

74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
35R60 PDEs with randomness, stochastic partial differential equations
74Q10 Homogenization and oscillations in dynamical problems of solid mechanics

References:

[1] H.-D. Alber, Initial-boundary value problems for constitutive equations with internal variables. Materials With Memory, Vol. 1682 of Lect. Notes Math. Springer Verlag, Berlin (1998). · Zbl 0977.35001
[2] H.-D. Alber, Evolving microstructure and homogenization. Contin. Mech. Thermodyn.12 (2000) 235-286. · Zbl 0983.74045 · doi:10.1007/s001610050137
[3] H.-D. Alber and S. Nesenenko, Justification of homogenization in viscoplasticity: From convergence on two scales to an asymptotic solution in L\^{}{2}(Ω). J. Multiscale Model.1 (2009) 223-244. · doi:10.1142/S1756973709000128
[4] P.G. Ciarlet, The finite element method for elliptic problems, Reprint of the 1978 original. Vol. 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). · Zbl 0999.65129
[5] G. Dal Maso and L. Modica, Nonlinear stochastic homogenization. Annali di Matematica Pura ed Applicata144 (1986) 347-389. · Zbl 0607.49010 · doi:10.1007/BF01760826
[6] G. Francfort and A. Giacomini, On periodic homogenization in perfect elasto-plasticity. J. Eur. Math. Soc.16 (2014) 409-461. · Zbl 1290.74033 · doi:10.4171/JEMS/437
[7] W. Han and B.D. Reddy, Mathematical theory and numerical analysis. Plasticity, Vol. 9 of Interdisciplinary Appl. Math. Springer-Verlag, New York (1999). · Zbl 0926.74001
[8] H. Hanke, Homgenization in gradient plasticity. Math. Models Methods Appl. Sci.21 (2011) 1651-1684. · Zbl 1233.35017 · doi:10.1142/S0218202511005520
[9] M. Heida and B. Schweizer, Non-periodic homogenization of infinitesimal strain plasticity equations. ZAMM Z. Angew. Math. Mech.96 (2016) 5-23. · Zbl 1335.74015 · doi:10.1002/zamm.201400112
[10] V. Jikov, S. Kozlov and O. Oleinik, Homogenization of Differential Operators and Integral Functionals. Springer (1994). · Zbl 0838.35001
[11] S.M. Kozlov, The averaging of random operators. Mat. Sb. (N.S.)109 (1979) 188-202. · Zbl 0415.60059
[12] A. Mielke, T. Roubicek and U. Stefanelli, Γ-limits and relaxations for rate-independent evolutionary problems. Calc. Var. Partial Differ. Equ.31 (2008) 387-416. · Zbl 1302.49013 · doi:10.1007/s00526-007-0119-4
[13] A. Mielke and A.M. Timofte, Two-scale homogenization for evolutionary variational inequalities via the energetic formulation. SIAM J. Math. Anal.39 (2007) 642-668. · Zbl 1185.35282 · doi:10.1137/060672790
[14] S. Müller, Homogenization of nonconvex integral functionals and cellular elastic materials. Archive for Rational Mech. Anal.99 (1987) 189-212. · Zbl 0629.73009 · doi:10.1007/BF00284506
[15] F. Murat and L. Tartar, H-convergence. In Topics in the Mathematical Modelling of Composite Materials. Springer (1997) 21-43. · Zbl 0920.35019
[16] S. Nesenenko, Homogenization in viscoplasticity. SIAM J. Math. Anal.39 (2007) 236-262. · Zbl 1130.74038 · doi:10.1137/060655092
[17] G.C. Papanicolaou and S.R.S. Varadhan, Boundary value problems with rapidly oscillating random coefficients. In {Random fields, Vol. I, II (Esztergom 1979), Vol. 27 of Colloq. Math. Soc. János Bolyai. North-Holland, Amsterdam New York (1981) 835–873.} · Zbl 0499.60059
[18] R. Rockafellar and R.-B. Wets, Variational Analysis. Springer (1998). · Zbl 0888.49001
[19] B. Schweizer, Homogenization of the Prager model in one-dimensional plasticity. Contin. Mech. Thermodyn.20 (2009) 459-477. · Zbl 1234.74015 · doi:10.1007/s00161-009-0094-4
[20] B. Schweizer and M. Veneroni. Periodic homogenization of the Prandtl-Reuss model with hardening. J. Multiscale Modell.2 (2010) 69-106. · doi:10.1142/S1756973710000291
[21] B. Schweizer and M. Veneroni, The needle problem approach to non-periodic homogenization. Netw. Heterog. Media6 (2011) 755-781. · Zbl 1264.35026 · doi:10.3934/nhm.2011.6.755
[22] B. Schweizer and M. Veneroni. Homogenization of plasticity equations with two-scale convergence methods. Appl. Anal.94 (2015) 376-399. · Zbl 1307.74020 · doi:10.1080/00036811.2014.896992
[23] A. Visintin, On homogenization of elasto-plasticity. J. Phys.: Conf. Ser.22 (2005) 222-234. · doi:10.1088/1742-6596/22/1/015
[24] A. Visintin, Homogenization of the nonlinear Kelvin-Voigt model of viscoelasticity and of the Prager model of plasticity. Contin. Mech. Thermodyn.18 (2006) 223-252. · Zbl 1160.74331 · doi:10.1007/s00161-006-0025-6
[25] A. Visintin, Homogenization of the nonlinear Maxwell model of viscoelasticity and of the Prandtl-Reuss model of elastoplasticity. Proc. Roy. Soc. Edinburgh Sect. A138 (2008) 1363-1401. · Zbl 1170.35016 · doi:10.1017/S0308210506000709
[26] V. Zhikov and A. Pyatniskii, Homogenization of random singular structures and random measures. Izv. Math.70 (2006) 19-67. · Zbl 1113.35021 · doi:10.1070/IM2006v070n01ABEH002302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.