×

Non-periodic homogenization of infinitesimal strain plasticity equations. (English) Zbl 1335.74015

Summary: We consider the Prandtl-Reuss model of plasticity with kinematic hardening, aiming at a homogenization result. For a sequence of coefficient fields and corresponding solutions \(u^\varepsilon\), we ask whether we can characterize weak limits \(u\) when \(u^\varepsilon\to u\) as \(\varepsilon\to 0\). We assume neither periodicity nor stochasticity for the coefficients, but we demand an abstract averaging property of the homogeneous system on reference volumes. Our conclusion is an effective equation on general domains with general right hand sides. The effective equation uses a causal evolution operator \(\Sigma\) that maps strains to stresses; more precisely, in each spatial point \(x\), given the evolution of the strain in the point \(x\), the operator \(\Sigma\) provides the evolution of the stress in \(x\).

MSC:

74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
35B27 Homogenization in context of PDEs; PDEs in media with periodic structure

References:

[1] H.‐D.Alber, Materials with Memory, volume 1682 of Lecture Notes in Mathematics. Initial‐boundary value problems for constitutive equations with internal variables (Springer‐Verlag, Berlin, 1998). · Zbl 0977.35001
[2] H.‐D.Alber, Evolving microstructure and homogenization, Contin. Mech. Thermodyn.12(4), 235-286 (2000). · Zbl 0983.74045
[3] H.‐D.Alber and S.Nesenenko, Justification of homogenization in viscoplasticity: From convergence on two scales to an asymptotic solution in \(L^2 ( \Omega )\), J. Multiscale Modelling1, 223-244 (2009).
[4] M.Berezhnyi and E.Khruslov, Non‐standard dynamics of elastic composites, Netw. Heterog. Media6(1), 89-109 (2011). · Zbl 1262.35189
[5] G.Bouchitté and B.Schweizer, Plasmonic waves allow perfect transmission through sub‐wavelength metallic gratings, Networks and Heterogeneous Media, 2014.
[6] D.Braess, Finite Elements, second edition (Cambridge University Press, Cambridge, 2001). Theory, fast solvers, and applications in solid mechanics. · Zbl 0976.65099
[7] A.Braides, V. ChiadòPiat, and A.Defranceschi, Homogenization of almost periodic monotone operators, Ann. Inst. H. Poincaré Anal. Non Linéaire9(4), 399-432 (1992). · Zbl 0785.35007
[8] P. G.Ciarlet, The finite element method for elliptic problems, volume 40 of Classics in Applied Mathematics (Society for Industrial and Applied Mathematics (SIAM)Philadelphia, PA, 2002). Reprint of the 1978 original. · Zbl 0999.65129
[9] A.Damlamian, N.Meunier, and J.Van Schaftingen, Periodic homogenization for convex functionals using Mosco convergence, Ric. Mat.57(2), 209-249 (2008). · Zbl 1232.35015
[10] G. A.Francfort and A.Giacomini, On periodic homogenization in perfect elasto‐plasticity, J. Eur. Math. Soc., to appear. · Zbl 1290.74033
[11] G. A.Francfort, F.Murat, and L.Tartar, Homogenization of monotone operators in divergence form with x‐dependent multivalued graphs, Ann. Mat. Pura Appl. (4)188(4), 631-652 (2009). · Zbl 1180.35077
[12] A.Gloria, S.Neukamm, and F.Otto, An optimal quantitative two‐scale expansion in stochastic homogenization of discrete elliptic equations, ESAIM Math. Model. Numer. Anal.48(2), 325-346 (2014). · Zbl 1307.35029
[13] K.Hackl, S.Heinz, and A.Mielke, A model for the evolution of laminates in finite‐strain elastoplasticity, ZAMM Z. Angew. Math. Mech.92(11‐12), 888-909 (2012). · Zbl 1348.74060
[14] W.Han and B. D.Reddy. Plasticity, volume 9 of Interdisciplinary Applied Mathematics (Springer‐Verlag, New York, 1999) Mathematical theory and numerical analysis. · Zbl 0926.74001
[15] M.Heida and B.Schweizer, Stochastic homogenization of a plasticity system, Technical report (TU Dortmund submitted, 2014).
[16] V. V.Jikov, S. M.Kozlov, and O. A.Oleĭnik, Homogenization of Differential Operators and Integral Functionals (Springer‐Verlag, Berlin, 1994). · Zbl 0838.35001
[17] A.Lamacz and B.Schweizer, Effective Maxwell equations in a geometry with flat rings of arbitrary shape, SIAM J. Math. Anal.45(3), 1460-1494 (2013). · Zbl 1291.35385
[18] V. A.Marchenko and E. Y.Khruslov, Homogenization of Partial Differential Equations, volume 46 of Progress in Mathematical Physics (Birkhäuser Boston Inc., Boston, MA, 2006). · Zbl 1113.35003
[19] A.Mielke, T.Roubicek, and U.Stefanelli, Γ‐limits and relaxations for rate‐independent evolutionary problems, Calc. Var. Partial Differ. Equ.31(3), 387-416 (2008). · Zbl 1302.49013
[20] A.Mielke and A. M.Timofte, Two‐scale homogenization for evolutionary variational inequalities via the energetic formulation, SIAM J. Math. Anal.39(2), 642-668 (electronic) (2007). · Zbl 1185.35282
[21] S.Nesenenko, Homogenization in viscoplasticity, SIAM J. Math. Anal.39(1), 236-262 (2007). · Zbl 1130.74038
[22] B.Schweizer, Homogenization of the Prager model in one‐dimensional plasticity, Contin. Mech. Thermodyn.20(8), 459-477 (2009). · Zbl 1234.74015
[23] B.Schweizer and M.Veneroni, Periodic homogenization of the Prandtl‐Reuss model with hardening, J. Multiscale Modelling2, 69-106 (2010).
[24] B.Schweizer and M.Veneroni, The needle problem approach to non‐periodic homogenization, NHM (2013).
[25] B.Schweizer and M.Veneroni, Homogenization of plasticity equations with two‐scale convergence methods, Appl. Anal. (2014).
[26] A.Visintin, On homogenization of elasto‐plasticity, J. Phys.: Conf. Ser.22, 222-234 (2005).
[27] A.Visintin, Homogenization of the nonlinear Kelvin‐Voigt model of viscoelasticity and of the Prager model of plasticity, Contin. Mech. Thermodyn.18(3‐4), 223-252 (2006). · Zbl 1160.74331
[28] A.Visintin, Two‐scale convergence of some integral functionals, Calc. Var. Partial Differential Equations29(2), 239-265 (2007). · Zbl 1129.35011
[29] A.Visintin, Homogenization of the nonlinear Maxwell model of viscoelasticity and of the Prandtl‐Reuss model of elastoplasticity, Proc. Roy. Soc. Edinburgh Sect. A138(6), 1363-1401 (2008). · Zbl 1170.35016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.