×

Positive solutions for super-sublinear indefinite problems: high multiplicity results via coincidence degree. (English) Zbl 1393.34038

In this interesting manuscript, the authors investigate the existence of positive solutions of the second order nonlinear ordinary differential equation \[ u''+q(t)g(u)=0,\tag{1} \] where the weight \(q\) is allowed to change sign and \(g\) is superlinear at \(0\), sublinear at infinity and positive on \((0, +\infty)\), under Dirichlet, Neumann and periodic boundary conditions. A remarkable feature here is that the authors, roughly speaking, “play” with the nodal behaviour of the weight function in order to achieve multiple positive solutions. The proofs utilize, in a careful way, topological degree arguments and in particular Mawhin’s coincidence degree for the Neumann and periodic cases. Furthermore, the authors provide general properties of the positive solutions of (1) on the whole real line, study positive subharmonic solutions and solutions with a chaotic-like behaviour. Finally, the authors give an application to radial solutions of PDEs on annular domains under Dirichlet or Neumann boundary conditions.

MSC:

34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
34C28 Complex behavior and chaotic systems of ordinary differential equations
47H11 Degree theory for nonlinear operators
47N20 Applications of operator theory to differential and integral equations

References:

[1] Amann, Herbert, On the number of solutions of nonlinear equations in ordered Banach spaces, J. Functional Analysis, 11, 346-384 (1972) · Zbl 0244.47046
[2] Atkinson, F. V.; Everitt, W. N.; Ong, K. S., On the \(m\)-coefficient of Weyl for a differential equation with an indefinite weight function, Proc. London Math. Soc. (3), 29, 368-384 (1974) · Zbl 0305.34039
[3] Aulbach, Bernd; Kieninger, Bernd, On three definitions of chaos, Nonlinear Dyn. Syst. Theory, 1, 1, 23-37 (2001) · Zbl 0991.37010
[4] Bandle, C.; Pozio, M. A.; Tesei, A., Existence and uniqueness of solutions of nonlinear Neumann problems, Math. Z., 199, 2, 257-278 (1988) · Zbl 0633.35042
[5] Barutello, Vivina L.; Boscaggin, Alberto; Verzini, Gianmaria, Positive solutions with a complex behavior for superlinear indefinite ODEs on the real line, J. Differential Equations, 259, 7, 3448-3489 (2015) · Zbl 1325.34056
[6] Berestycki, H.; Capuzzo-Dolcetta, I.; Nirenberg, L., Superlinear indefinite elliptic problems and nonlinear Liouville theorems, Topol. Methods Nonlinear Anal., 4, 1, 59-78 (1994) · Zbl 0816.35030
[7] Bhatia, N. P.; Szeg\"o, G. P., Stability theory of dynamical systems, Die Grundlehren der mathematischen Wissenschaften, Band 161, xi+225 pp. (1970), Springer-Verlag, New York-Berlin · Zbl 0993.37001
[8] Block, L. S.; Coppel, W. A., Dynamics in one dimension, Lecture Notes in Mathematics 1513, viii+249 pp. (1992), Springer-Verlag, Berlin · Zbl 0746.58007
[9] Bonheure, Denis; Gomes, Jos\'e Maria; Habets, Patrick, Multiple positive solutions of superlinear elliptic problems with sign-changing weight, J. Differential Equations, 214, 1, 36-64 (2005) · Zbl 1210.35089
[10] Boscaggin, Alberto, A note on a superlinear indefinite Neumann problem with multiple positive solutions, J. Math. Anal. Appl., 377, 1, 259-268 (2011) · Zbl 1223.34022
[11] Boscaggin, Alberto; Feltrin, Guglielmo; Zanolin, Fabio, Pairs of positive periodic solutions of nonlinear ODEs with indefinite weight: a topological degree approach for the super-sublinear case, Proc. Roy. Soc. Edinburgh Sect. A, 146, 3, 449-474 (2016) · Zbl 1360.34088
[12] Boscaggin, Alberto; Zanolin, Fabio, Pairs of positive periodic solutions of second order nonlinear equations with indefinite weight, J. Differential Equations, 252, 3, 2900-2921 (2012) · Zbl 1243.34055
[13] Boscaggin, Alberto; Zanolin, Fabio, Positive periodic solutions of second order nonlinear equations with indefinite weight: multiplicity results and complex dynamics, J. Differential Equations, 252, 3, 2922-2950 (2012) · Zbl 1237.34076
[14] Boscaggin, Alberto; Zanolin, Fabio, Pairs of nodal solutions for a class of nonlinear problems with one-sided growth conditions, Adv. Nonlinear Stud., 13, 1, 13-53 (2013) · Zbl 1286.34031
[15] Capietto, Anna; Dambrosio, Walter; Papini, Duccio, Superlinear indefinite equations on the real line and chaotic dynamics, J. Differential Equations, 181, 2, 419-438 (2002) · Zbl 1011.34032
[16] Carbinatto, Maria C.; Kwapisz, Jaroslaw; Mischaikow, Konstantin, Horseshoes and the Conley index spectrum, Ergodic Theory Dynam. Systems, 20, 2, 365-377 (2000) · Zbl 0971.37005
[17] Corduneanu, Constantin, Integral equations and stability of feedback systems, ix+238 pp. (1973), Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London · Zbl 0273.45001
[18] Dancer, E. N., The effect of domain shape on the number of positive solutions of certain nonlinear equations, J. Differential Equations, 74, 1, 120-156 (1988) · Zbl 0662.34025
[19] Dancer, E. N., The effect of domain shape on the number of positive solutions of certain nonlinear equations. II, J. Differential Equations, 87, 2, 316-339 (1990) · Zbl 0729.35050
[20] Feltrin, Guglielmo; Zanolin, Fabio, Existence of positive solutions in the superlinear case via coincidence degree: the Neumann and the periodic boundary value problems, Adv. Differential Equations, 20, 9-10, 937-982 (2015) · Zbl 1345.34031
[21] Feltrin, Guglielmo; Zanolin, Fabio, Multiple positive solutions for a superlinear problem: a topological approach, J. Differential Equations, 259, 3, 925-963 (2015) · Zbl 1322.34037
[22] Feltrin, Guglielmo; Zanolin, Fabio, Multiplicity of positive periodic solutions in the superlinear indefinite case via coincidence degree, J. Differential Equations, 262, 8, 4255-4291 (2017) · Zbl 1417.34063 · doi:10.1016/j.jde.2017.01.009
[23] Gaines, Robert E.; Mawhin, Jean L., Coincidence degree, and nonlinear differential equations, Lecture Notes in Mathematics, Vol. 568, i+262 pp. (1977), Springer-Verlag, Berlin-New York · Zbl 0339.47031
[24] Gaudenzi, M.; Habets, P.; Zanolin, F., An example of a superlinear problem with multiple positive solutions, Atti Sem. Mat. Fis. Univ. Modena, 51, 2, 259-272 (2003) · Zbl 1221.34057
[25] Gaudenzi, Marcellino; Habets, Patrick; Zanolin, Fabio, A seven-positive-solutions theorem for a superlinear problem, Adv. Nonlinear Stud., 4, 2, 149-164 (2004) · Zbl 1067.34022
[26] Gir\~ao, Pedro M.; Gomes, Jos\'e Maria, Multi-bump nodal solutions for an indefinite non-homogeneous elliptic problem, Proc. Roy. Soc. Edinburgh Sect. A, 139, 4, 797-817 (2009) · Zbl 1172.35403
[27] Gir\~ao, Pedro M.; Gomes, Jos\'e Maria, Multibump nodal solutions for an indefinite superlinear elliptic problem, J. Differential Equations, 247, 4, 1001-1012 (2009) · Zbl 1173.35060
[28] G\'omez-Re\~nasco, R.; L\'opez-G\'omez, J., The effect of varying coefficients on the dynamics of a class of superlinear indefinite reaction-diffusion equations, J. Differential Equations, 167, 1, 36-72 (2000) · Zbl 0965.35061
[29] Granas, Andrzej, The Leray-Schauder index and the fixed point theory for arbitrary ANRs, Bull. Soc. Math. France, 100, 209-228 (1972) · Zbl 0236.55004
[30] Hale, Jack K., Ordinary differential equations, xvi+361 pp. (1980), Robert E. Krieger Publishing Co., Inc., Huntington, N.Y. · Zbl 0433.34003
[31] Hess, Peter; Kato, Tosio, On some linear and nonlinear eigenvalue problems with an indefinite weight function, Comm. Partial Differential Equations, 5, 10, 999-1030 (1980) · Zbl 0477.35075
[32] Klain, Daniel A.; Rota, Gian-Carlo, Introduction to geometric probability, Lezioni Lincee. [Lincei Lectures], xiv+178 pp. (1997), Cambridge University Press, Cambridge · Zbl 0896.60004
[33] Krasnosel\cprime ski\u \i , M. A., The operator of translation along the trajectories of differential equations, Translations of Mathematical Monographs, Vol. 19. Translated from the Russian by Scripta Technica, vi+294 pp. (1968), American Mathematical Society, Providence, R.I. · Zbl 1398.34003
[34] Lions, P.-L., On the existence of positive solutions of semilinear elliptic equations, SIAM Rev., 24, 4, 441-467 (1982) · Zbl 0511.35033
[35] Lothaire, M., Combinatorics on words, Cambridge Mathematical Library, xviii+238 pp. (1997), Cambridge University Press, Cambridge · Zbl 0874.20040
[36] Mawhin, J., \'Equations int\'egrales et solutions p\'eriodiques des syst\`“emes diff\'”erentiels non lin\'eaires, Acad. Roy. Belg. Bull. Cl. Sci. (5), 55, 934-947 (1969) · Zbl 0193.06103
[37] Mawhin, J., Topological degree methods in nonlinear boundary value problems, CBMS Regional Conference Series in Mathematics 40, v+122 pp. (1979), American Mathematical Society, Providence, R.I. · Zbl 0414.34025
[38] Ma-93 J. Mawhin, Topological degree and boundary value problems for nonlinear differential equations, Topological methods for ordinary differential equations (Montecatini Terme, 1991), Lecture Notes in Mathematics, vol. 1537, Springer, Berlin, 1993, pp. 74-142. · Zbl 0798.34025
[39] Ma-96 J. Mawhin, Bounded solutions of nonlinear ordinary differential equations, Non-linear analysis and boundary value problems for ordinary differential equations (Udine), CISM Courses and Lectures, vol. 371, Springer, Vienna, 1996, pp. 121-147. · Zbl 0886.34010
[40] Mawhin, Jean, Leray-Schauder degree: a half century of extensions and applications, Topol. Methods Nonlinear Anal., 14, 2, 195-228 (1999) · Zbl 0957.47045
[41] Mischaikow, Konstantin; Mrozek, Marian, Chaos in the Lorenz equations: a computer-assisted proof, Bull. Amer. Math. Soc. (N.S.), 32, 1, 66-72 (1995) · Zbl 0820.58042
[42] Mischaikow, Konstantin; Mrozek, Marian, Isolating neighborhoods and chaos, Japan J. Indust. Appl. Math., 12, 2, 205-236 (1995) · Zbl 0840.58033
[43] Moser, J\"urgen, Stable and random motions in dynamical systems, viii+198 pp. (1973), Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo · Zbl 0991.70002
[44] Nussbaum, Roger D., The fixed point index and some applications, S\'eminaire de Math\'ematiques Sup\'erieures [Seminar on Higher Mathematics] 94, 145 pp. (1985), Presses de l’Universit\'e de Montr\'eal, Montreal, QC · Zbl 0565.47040
[45] Nu-93 Roger D. Nussbaum, The fixed point index and fixed point theorems, Topological methods for ordinary differential equations (Montecatini Terme, 1991), Lecture Notes in Mathematics, vol. 1537, Springer, Berlin, 1993, pp. 143-205. · Zbl 0815.47074
[46] Ouyang, Tiancheng; Shi, Junping, Exact multiplicity of positive solutions for a class of semilinear problems, J. Differential Equations, 146, 1, 121-156 (1998) · Zbl 0918.35049
[47] Ouyang, Tiancheng; Shi, Junping, Exact multiplicity of positive solutions for a class of semilinear problem. II, J. Differential Equations, 158, 1, 94-151 (1999) · Zbl 0947.35067
[48] Rabinowitz, Paul H., Pairs of positive solutions of nonlinear elliptic partial differential equations, Indiana Univ. Math. J., 23, 173-186 (1973/74) · Zbl 0264.35032
[49] Sell, George R., Topological dynamics and ordinary differential equations, ix+199 pp. (1971), Van Nostrand Reinhold Co., London · Zbl 0212.29202
[50] Sibirsky, K. S., Introduction to topological dynamics, ix+163 pp. (1975), Noordhoff International Publishing, Leiden · Zbl 0297.54001
[51] Smale, S., Differentiable dynamical systems, Bull. Amer. Math. Soc., 73, 747-817 (1967) · Zbl 0202.55202
[52] Srzednicki, Roman; W\'ojcik, Klaudiusz, A geometric method for detecting chaotic dynamics, J. Differential Equations, 135, 1, 66-82 (1997) · Zbl 0873.58049
[53] Walters, Peter, An introduction to ergodic theory, Graduate Texts in Mathematics 79, ix+250 pp. (1982), Springer-Verlag, New York-Berlin · Zbl 0958.28011
[54] Zgliczy\'nski, Piotr, Fixed point index for iterations of maps, topological horseshoe and chaos, Topol. Methods Nonlinear Anal., 8, 1, 169-177 (1996) · Zbl 0903.58031
[55] Gidea, Marian; Zgliczy\'nski, Piotr, Covering relations for multidimensional dynamical systems. II, J. Differential Equations, 202, 1, 59-80 (2004) · Zbl 1096.37031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.