×

Thermomechanics of the interface between a body and its environment. (English) Zbl 1160.74303

Summary: We formulate integral statements of force balance, energy balance, and entropy imbalance for an interface between a body and its environment. These statements account for interfacial energy, entropy, and stress but neglect the inertia of the interface. Our final results consist of boundary conditions describing thermomechanical interactions between the body and its environment. In their most general forms, these results are partial differential equations that account for dissipation and encompass as special cases Navier’s slip law, Newton’s law of cooling, and Kirchhoff’s law of radiation. When dissipation is neglected, our results reduce to the well-known zero-slip, free-surface, zero-shear, prescribed temperature, and flux-free conditions.

MSC:

74A15 Thermodynamics in solid mechanics
74F05 Thermal effects in solid mechanics
80A17 Thermodynamics of continua
Full Text: DOI

References:

[1] Capriz G. and Podio-Guidugli P. (2005). Whence the boundary conditions in modern continuum physics?. Atti. Dei. Convegni. Lincei. 210: 19–42
[2] Kleinstein G.G. (2005). On the derivation of boundary conditions fom the global principles of continuum mechanics. Q. Appl. Math. 63: 469–478
[3] Cermelli P., Fried E. and Gurtin M.E. (2005). Transport relations for surface integrals arising in the formulation of balance laws for evolving fluid interfaces. J. Fluid Mech. 544: 339–351 · Zbl 1083.76061 · doi:10.1017/S0022112005006695
[4] Slattery J.C. (1972). Momentum, Energy and Mass Transfer in Continua. McGraw-Hill, New York
[5] Slattery J.C. (1990). Interfacial Transport Phenomena. Springer, New York · Zbl 1116.76001
[6] Phillips H.B. (1933). Vector Analysis. Wiley, New York · JFM 59.1385.03
[7] Aris R. (1989). Vectors, Tensors and the Basic Equations of Fluid Mechanics. Dover, New York · Zbl 1158.76300
[8] Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Rational Mech. Anal. 57, 291–323 (1975) Addenda 59, 389–390 (1975) · Zbl 0326.73001
[9] Scriven L.E. (1960). Dynamics of a fluid interface. Chem. Eng. Sci. 12: 98–108 · doi:10.1016/0009-2509(60)87003-0
[10] Edwards D.A., Brenner H. and Wasan D.T. (1991). Interfacial Transport Processes and Rheology. Butterworth–Heinemann, Boston
[11] Young T. (1805). An essay on the cohesion of fluids. Phil. Trans. Royal Soc. Lond. 95: 65–87 · doi:10.1098/rstl.1805.0005
[12] Laplace, P.S.: Méchanique Céleste, Supplement au Xe Livre, Impresse Imperiale, Paris, 1806. (Translated as: Celestial Mechanics, Vol IV, Chelsea, New York, 1966)
[13] Navier C.L.M.H. (1823). Mémoire sur les lois du mouvement des fluides. Mémoires de l’Académie Royale Sciences de l’Institut de France 6: 389–441
[14] Newton, I.: Scala graduum caloris. Philos. Trans. R. Soc. Lond. 22 (1701), 824–829. (Translated in: I. B. Cohen, Isaac Newton’s Papers and Letters on Natural Philosophy, Cambridge University Press, Cambridge, 1958)
[15] Kirchhoff G.R. (1860). Über das Verhältnis zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht. Ann. Physik 19: 275–301
[16] Gurtin M.E. (2000). Configurational Forces as Basic Concepts in Continuum Physics. Springer, New York · Zbl 0951.74003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.