×

Quasi-optimality of a pressure-robust nonconforming finite element method for the Stokes-problem. (English) Zbl 1392.35116

Summary: Nearly all classical inf-sup stable mixed finite element methods for the incompressible Stokes equations are not pressure-robust, i.e., the velocity error is dependent on the pressure. However, recent results show that pressure-robustness can be recovered by a nonstandard discretization of the right-hand side alone. This variational crime introduces a consistency error in the method which can be estimated in a straightforward manner provided that the exact velocity solution is sufficiently smooth. The purpose of this paper is to analyze the pressure-robust scheme with low regularity. The numerical analysis applies divergence-free \(H^1\)-conforming Stokes finite element methods as a theoretical tool. As an example, pressure-robust velocity and pressure a priori error estimates will be presented for the (first-order) nonconforming Crouzeix-Raviart element. A key feature in the analysis is the dependence of the errors on the Helmholtz projector of the right-hand side data, and not on the entire data term. Numerical examples illustrate the theoretical results.

MSC:

35J25 Boundary value problems for second-order elliptic equations
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
76D07 Stokes and related (Oseen, etc.) flows
Full Text: DOI

References:

[1] ALM2017 N. Ahmed, A. Linke, and C. Merdon, On really locking-free mixed methods for the transient incompressible Stokes equations, SIAM Journal on Numerical Analysis (2017), 1-24, accepted. WIAS Preprint 2368.
[2] Belenli, Mine Akbas; Rebholz, Leo G.; Tone, Florentina, A note on the importance of mass conservation in long-time stability of Navier-Stokes simulations using finite elements, Appl. Math. Lett., 45, 98-102 (2015) · Zbl 1311.76044
[3] arnold:qin:scott:vogelius:2D D. N. Arnold and J. Qin, Quadratic velocity/linear pressure Stokes elements, Advances in Computer Methods for Partial Differential Equations VII (R. Vichnevetsky, D. Knight, and G. Richter, eds.), IMACS, 1992, pp. 28-34.
[4] Brennecke, C.; Linke, A.; Merdon, C.; Sch\"oberl, J., Optimal and pressure-independent \(L^2\) velocity error estimates for a modified Crouzeix-Raviart Stokes element with BDM reconstructions, J. Comput. Math., 33, 2, 191-208 (2015) · Zbl 1340.76024
[5] Brenner, Susanne C.; Scott, L. Ridgway, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics 15, xviii+397 pp. (2008), Springer, New York · Zbl 1135.65042
[6] Brezzi, Franco; Douglas, Jim, Jr.; Marini, L. D., Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47, 2, 217-235 (1985) · Zbl 0599.65072
[7] Brezzi, Franco; Fortin, Michel, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics 15, x+350 pp. (1991), Springer-Verlag, New York · Zbl 0788.73002
[8] Buffa, A.; de Falco, C.; Sangalli, G., IsoGeometric Analysis: stable elements for the 2D Stokes equation, Internat. J. Numer. Methods Fluids, 65, 11-12, 1407-1422 (2011) · Zbl 1429.76044
[9] ChristiansenHuHu16 S. H. Christiansen, J. Hu, and K. Hu, Nodal finite element de Rham complexes, arXiv:1611.02558, 2016. · Zbl 1397.65256
[10] Evans, John A.; Hughes, Thomas J. R., Isogeometric divergence-conforming B-splines for the steady Navier-Stokes equations, Math. Models Methods Appl. Sci., 23, 8, 1421-1478 (2013) · Zbl 1383.76337
[11] Falk, Richard S.; Neilan, Michael, Stokes complexes and the construction of stable finite elements with pointwise mass conservation, SIAM J. Numer. Anal., 51, 2, 1308-1326 (2013) · Zbl 1268.76032
[12] Galdi, G. P., An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Springer Monographs in Mathematics, xiv+1018 pp. (2011), Springer, New York · Zbl 1245.35002
[13] Galvin, Keith J.; Linke, Alexander; Rebholz, Leo G.; Wilson, Nicholas E., Stabilizing poor mass conservation in incompressible flow problems with large irrotational forcing and application to thermal convection, Comput. Methods Appl. Mech. Engrg., 237/240, 166-176 (2012) · Zbl 1253.76057
[14] Girault, Vivette; Raviart, Pierre-Arnaud, Finite Element Methods for Navier-Stokes Equations, Springer Series in Computational Mathematics 5, x+374 pp. (1986), Springer-Verlag, Berlin · Zbl 0585.65077
[15] Gudi, Thirupathi, A new error analysis for discontinuous finite element methods for linear elliptic problems, Math. Comp., 79, 272, 2169-2189 (2010) · Zbl 1201.65198
[16] Guzm\'an, Johnny; Neilan, Michael, A family of nonconforming elements for the Brinkman problem, IMA J. Numer. Anal., 32, 4, 1484-1508 (2012) · Zbl 1332.76057
[17] Guzm\'an, Johnny; Neilan, Michael, Conforming and divergence-free Stokes elements on general triangular meshes, Math. Comp., 83, 285, 15-36 (2014) · Zbl 1322.76041
[18] Guzm\'an, Johnny; Neilan, Michael, Conforming and divergence-free Stokes elements in three dimensions, IMA J. Numer. Anal., 34, 4, 1489-1508 (2014) · Zbl 1305.76056
[19] John, Volker; Linke, Alexander; Merdon, Christian; Neilan, Michael; Rebholz, Leo G., On the divergence constraint in mixed finite element methods for incompressible flows, SIAM Rev., 59, 3, 492-544 (2017) · Zbl 1426.76275
[20] lederer:2016 P. Lederer, Pressure-robust discretizations for Navier-Stokes equations: Divergence-free reconstruction for Taylor-Hood elements and high order Hybrid Discontinuous Galerkin methods, Master’s thesis, Vienna Technical University, 2016, diploma thesis.
[21] Lederer, Philip L.; Linke, Alexander; Merdon, Christian; Sch\"oberl, Joachim, Divergence-free reconstruction operators for pressure-robust Stokes discretizations with continuous pressure finite elements, SIAM J. Numer. Anal., 55, 3, 1291-1314 (2017) · Zbl 1457.65202
[22] Li, Mingxia; Mao, Shipeng; Zhang, Shangyou, New error estimates of nonconforming mixed finite element methods for the Stokes problem, Math. Methods Appl. Sci., 37, 7, 937-951 (2014) · Zbl 1314.65143
[23] Linke, Alexander, Collision in a cross-shaped domain-a steady 2d Navier-Stokes example demonstrating the importance of mass conservation in CFD, Comput. Methods Appl. Mech. Engrg., 198, 41-44, 3278-3286 (2009) · Zbl 1230.76028
[24] Linke, Alexander, On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime, Comput. Methods Appl. Mech. Engrg., 268, 782-800 (2014) · Zbl 1295.76007
[25] Linke, A.; Merdon, C., On velocity errors due to irrotational forces in the Navier-Stokes momentum balance, J. Comput. Phys., 313, 654-661 (2016) · Zbl 1349.65627
[26] Linke, A.; Merdon, C., Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 311, 304-326 (2016) · Zbl 1439.76083
[27] Linke, A.; Merdon, C.; Wollner, W., Optimal \(L^2\) velocity error estimate for a modified pressure-robust Crouzeix-Raviart Stokes element, IMA J. Numer. Anal., 37, 1, 354-374 (2017) · Zbl 1433.76089
[28] Linke, Alexander; Matthies, Gunar; Tobiska, Lutz, Robust arbitrary order mixed finite element methods for the incompressible Stokes equations with pressure independent velocity errors, ESAIM Math. Model. Numer. Anal., 50, 1, 289-309 (2016) · Zbl 1381.76186
[29] Manica, Carolina C.; Neda, Monika; Olshanskii, Maxim; Rebholz, Leo G., Enabling numerical accuracy of Navier-Stokes-\( \alpha\) through deconvolution and enhanced stability, ESAIM Math. Model. Numer. Anal., 45, 2, 277-307 (2011) · Zbl 1267.76021
[30] Manica, Carolina C.; Neda, Monika; Olshanskii, Maxim; Rebholz, Leo G.; Wilson, Nicholas E., On an efficient finite element method for Navier-Stokes-\( \overline{\omega}\) with strong mass conservation, Comput. Methods Appl. Math., 11, 1, 3-22 (2011) · Zbl 1283.76018
[31] Mao, ShiPeng; Shi, ZhongCi, On the error bounds of nonconforming finite elements, Sci. China Math., 53, 11, 2917-2926 (2010) · Zbl 1211.65148
[32] Mardal, Kent Andre; Tai, Xue-Cheng; Winther, Ragnar, A robust finite element method for Darcy-Stokes flow, SIAM J. Numer. Anal., 40, 5, 1605-1631 (2002) · Zbl 1037.65120
[33] Neilan, Michael; Sap, Duygu, Stokes elements on cubic meshes yielding divergence-free approximations, Calcolo, 53, 3, 263-283 (2016) · Zbl 1388.76148
[34] fneumann F. Neumann, Quasi-Optimalit\`“at bei einer druckrobusten nichtkonformen Finite-Elemente-Methode f\'”ur das Stokes Problem, Master’s thesis, Humboldt-Universit\"at zu Berlin, 2016.
[35] N\'ed\'elec, J.-C., Mixed finite elements in \({\bf R}^3\), Numer. Math., 35, 3, 315-341 (1980) · Zbl 0419.65069
[36] N\'ed\'elec, J.-C., A new family of mixed finite elements in \({\bf R}^3\), Numer. Math., 50, 1, 57-81 (1986) · Zbl 0625.65107
[37] Qin, Jinshui, On the convergence of some low order mixed finite elements for incompressible fluids, 158 pp. (1994), ProQuest LLC, Ann Arbor, MI
[38] Qin, Jinshui; Zhang, Shangyou, Stability and approximability of the \(\mathcal{P}_1-\mathcal{P}_0\) element for Stokes equations, Internat. J. Numer. Methods Fluids, 54, 5, 497-515 (2007) · Zbl 1204.76020
[39] Scott, L. R.; Vogelius, M., Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, RAIRO Mod\'el. Math. Anal. Num\'er., 19, 1, 111-143 (1985) · Zbl 0608.65013
[40] Sohr, Hermann, The Navier-Stokes Equations, Modern Birkh\`“auser Classics, x+367 pp. (2001), Birkh\'”auser/Springer Basel AG, Basel · Zbl 0983.35004
[41] Stenberg, Rolf, A nonstandard mixed finite element family, Numer. Math., 115, 1, 131-139 (2010) · Zbl 1189.65285
[42] Vogelius, Michael, An analysis of the \(p\)-version of the finite element method for nearly incompressible materials. Uniformly valid, optimal error estimates, Numer. Math., 41, 1, 39-53 (1983) · Zbl 0504.65061
[43] Vogelius, Michael, A right-inverse for the divergence operator in spaces of piecewise polynomials. Application to the \(p\)-version of the finite element method, Numer. Math., 41, 1, 19-37 (1983) · Zbl 0504.65060
[44] Zhang, Shangyou, A new family of stable mixed finite elements for the 3D Stokes equations, Math. Comp., 74, 250, 543-554 (2005) · Zbl 1085.76042
[45] Zhang, Shangyou, On the P1 Powell-Sabin divergence-free finite element for the Stokes equations, J. Comput. Math., 26, 3, 456-470 (2008) · Zbl 1174.65039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.