×

Collision in a cross-shaped domain - A steady 2D Navier-Stokes example demonstrating the importance of mass conservation in CFD. (English) Zbl 1230.76028

Summary: In the numerical simulation of the incompressible Navier-Stokes equations different numerical instabilities can occur. While instability in the discrete velocity due to dominant convection and instability in the discrete pressure due to a vanishing discrete Ladyzhenskaya-Babuska-Brezzi (LBB) constant are well-known, instability in the discrete velocity due to a poor mass conservation at high Reynolds numbers sometimes seems to be underestimated. At least, when using conforming Galerkin mixed finite element methods like the Taylor-Hood element, the classical grad-div stabilization for enhancing discrete mass conservation is often neglected in practical computations. Though simple academic flow problems showing the importance of mass conservation are well-known, these examples differ from practically relevant ones, since specially designed force vectors are prescribed. Therefore, we present a simple steady Navier-Stokes problem in two space dimensions at Reynolds number 1024, a colliding flow in a cross-shaped domain, where the instability of poor mass conservation is studied in detail and where no force vector is prescribed.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI

References:

[1] Alt, H. W., Lineare Funktionalanalysis (1999), Springer: Springer Berlin · Zbl 0923.46001
[2] D.N. Arnold, J. Qin, Quadratic velocity/linear pressure Stokes elements, in: R. Vichnevetsky, D. Knight, G. Richter (Eds.), Advances in Computer Methods for Partial Differential Equations VII, IMACS, 1992, pp. 28-34.; D.N. Arnold, J. Qin, Quadratic velocity/linear pressure Stokes elements, in: R. Vichnevetsky, D. Knight, G. Richter (Eds.), Advances in Computer Methods for Partial Differential Equations VII, IMACS, 1992, pp. 28-34.
[3] Braack, M.; Burman, E.; John, V.; Lube, G., Stabilized finite element methods for the generalized Oseen problem, Comput. Methods Appl. Mech. Engrg., 196, 853-866 (2007) · Zbl 1120.76322
[4] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Elements (1991), Springer · Zbl 0788.73002
[5] Burman, E.; Hansbo, P., Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems, Comput. Methods Appl. Mech. Engrg., 193, 1437-1453 (2004) · Zbl 1085.76033
[6] Burman, E.; Linke, A., Stabilized finite element schemes for incompressible flows using Scott-Vogelius elements, Appl. Numer. Math., 58, 1704-1719 (2008) · Zbl 1148.76031
[7] Codina, R., Stabilized finite element approximation of transient incompressible flows using orthogonal subscales, Comput. Methods Appl. Mech. Engrg., 191, 4295-4321 (2002) · Zbl 1015.76045
[8] Ern, A.; Guermond, J. L., Theory and Practice of Finite Elements (2004), Springer-Verlag: Springer-Verlag New York · Zbl 1059.65103
[9] Ganesan, S.; John, V., Pressure separation – a technique for improving the velocity error in finite element discretisations of the Navier-Stokes equations, Appl. Math. Comput., 165, 275-290 (2005) · Zbl 1125.76039
[10] K. Gärtner, O. Schenk, Solving unsymmetric sparse systems of linear equations with pardiso, in: Computational Science - ICCS 2002, Part II, Lecture Notes in Computational Science , ICCS, Berlin, 2002, pp. 355-363.; K. Gärtner, O. Schenk, Solving unsymmetric sparse systems of linear equations with pardiso, in: Computational Science - ICCS 2002, Part II, Lecture Notes in Computational Science , ICCS, Berlin, 2002, pp. 355-363. · Zbl 1062.65035
[11] Gelhard, T.; Lube, G.; Olshanskii, M. A.; Starcke, J.-H., Stabilized finite element schemes with LBB-stable elements for incompressible flows, J. Comput. Appl. Math., 177, 243-267 (2005) · Zbl 1063.76054
[12] Girault, V.; Raviart, P.-A., Finite Element Methods for the Navier-Stokes Equations (1986), Springer-Verlag: Springer-Verlag Berlin · Zbl 0413.65081
[13] Griffiths, D. F., The effect of pressure approximations on finite element calculations of incompressible flows, (Morton, K. W.; Baines, M. J., Numerical Methods for Fluid Dynamics (1982), Academic Press: Academic Press London) · Zbl 0506.76001
[14] John, V.; Kaya, S., A finite element variational multiscale method for the Navier-Stokes equations, SIAM J. Sci. Comput., 26, 1485-1503 (2005) · Zbl 1073.76054
[15] John, V.; Knobloch, P., On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations: part I - a review, Comp. Meth. Appl. Mech. Engrg., 196, 2197-2215 (2007) · Zbl 1173.76342
[16] John, V.; Knobloch, P., On the performance of SOLD methods for convection-diffusion problems with interior layers, Int. J. Comp. Sci. Math., 1, 245-258 (2007) · Zbl 1185.65212
[17] Johnson, C.; Saranen, J., Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations, Math. Comp., 47, 1-18 (1986) · Zbl 0609.76020
[18] Kuzmin, D., On the design of algebraic flux correction schemes for quadratic finite elements, J. Comput. Appl. Math., 218, 79-87 (2008) · Zbl 1143.65092
[19] A. Linke, Divergence-free mixed finite elements for the incompressible Navier-Stokes equation, Ph.D. Dissertation, University of Erlangen, 2007.; A. Linke, Divergence-free mixed finite elements for the incompressible Navier-Stokes equation, Ph.D. Dissertation, University of Erlangen, 2007.
[20] Linke, A.; Matthies, G.; Tobiska, L., Non-nested multi-grid solvers for mixed divergence-free Scott-Vogelius discretizations, Computing, 83, 87-107 (2008) · Zbl 1175.65144
[21] G. Matthies, G. Lube, L. Röhe, Some remarks on streamline-diffusion methods for inf-sup stable discretisations of the generalised Oseen problem, Comp. Meths. Appl. Sc. (2009), accepted for publication.; G. Matthies, G. Lube, L. Röhe, Some remarks on streamline-diffusion methods for inf-sup stable discretisations of the generalised Oseen problem, Comp. Meths. Appl. Sc. (2009), accepted for publication. · Zbl 1245.76051
[22] Matthies, G.; Skrzypcz, P.; Tobiska, L., A unified convergence analysis for local projection stabilisations applied to the Oseen problem, Math. Model. Numer. Anal., 41, 713-742 (2007) · Zbl 1188.76226
[23] U. Nävert, A finite element method for convection-diffusion problems, Ph.D. Dissertation, Chalmers University of Technology, 1982.; U. Nävert, A finite element method for convection-diffusion problems, Ph.D. Dissertation, Chalmers University of Technology, 1982.
[24] Olshanskii, M. A.; Reusken, A., Grad-div stabilization for Stokes equations, Math. Comp., 73, 1699-1718 (2004) · Zbl 1051.65103
[25] J. Qin, On the convergence of some low order mixed finite elements for incompressible fluids, Ph.D. Dissertation, Pennsylvania State University, 1994.; J. Qin, On the convergence of some low order mixed finite elements for incompressible fluids, Ph.D. Dissertation, Pennsylvania State University, 1994.
[26] Roos, H.-G.; Stynes, M.; Tobiska, L., Robust Numerical Methods for Singularly Perturbed Differential Equations. Robust Numerical Methods for Singularly Perturbed Differential Equations, Convection-Diffusion-Reaction and Flow Problems (2008), Springer: Springer Berlin · Zbl 1155.65087
[27] Růžička, M., Nichtlineare Funktionalanalysis. Nichtlineare Funktionalanalysis, Eine Einführung (2004), Springer · Zbl 1043.46002
[28] F. Schieweck, Parallele Lösung der stationären inkompressiblen Navier-Stokes Gleichungen, Habilitation Thesis, University of Magdeburg, 1997.; F. Schieweck, Parallele Lösung der stationären inkompressiblen Navier-Stokes Gleichungen, Habilitation Thesis, University of Magdeburg, 1997. · Zbl 0915.76051
[29] Schmidt, A.; Siebert, K. G., Design of adaptive finite element software – the finite element toolbox ALBERTA, (Lecture Notes in Computational Science and Engineering, vol. 42 (2005), Springer-Verlag: Springer-Verlag Berlin) · Zbl 1068.65138
[30] L.R. Scott, M. Vogelius, Conforming finite element methods for incompressible and nearly incompressible continua, in: Large-Scale Computations in Fluid Mechanics, Part 2 Lectures in Applied Mathematics, vol. 22-2, 1985, pp. 221-244.; L.R. Scott, M. Vogelius, Conforming finite element methods for incompressible and nearly incompressible continua, in: Large-Scale Computations in Fluid Mechanics, Part 2 Lectures in Applied Mathematics, vol. 22-2, 1985, pp. 221-244. · Zbl 0582.76028
[31] J. Shewchuk, Triangle: a two-dimensional quality mesh generator and Delaunay triangulator, <http://www.cs.cmu.edu/quake/triangle.html; J. Shewchuk, Triangle: a two-dimensional quality mesh generator and Delaunay triangulator, <http://www.cs.cmu.edu/quake/triangle.html
[32] Vogelius, M., An analysis of the \(p\)-version of the finite element method for nearly incompressible materials Uniformly valid optimal error estimates, Numer. Math., 41, 39-53 (1983) · Zbl 0504.65061
[33] Vogelius, M., A right-inverse for the divergence operator in spaces of piecewise polynomials Application to the \(p\)-version of the finite element method, Numer. Math., 41, 19-37 (1983) · Zbl 0504.65060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.