×

Parametric analysis of steady bifurcations in 2D incompressible viscous flow with high order algorithm. (English) Zbl 1391.76546

Summary: This work deals with the computation of steady bifurcation points in 2D incompressible Newtonian fluid flows. The problem is modeled with the Navier-Stokes equations with an evolving geometric parameter. The aim of the present study is to propose a reliable and efficient numerical method for parametric steady bifurcation calculations. The numerical algorithm is based on the coupling of a continuation method with a homotopy technique. The continuation method lies on the asymptotic numerical method with Padé approximants for an initial linear stability analysis with an initial geometric configuration. The homotopy technique completes the calculation with the computation of critical Reynolds numbers for different discrete values of the geometric parameter. Two classical numerical problems are approached. The first one is the flow in sudden expansion. The geometric parameter is the height of the expansion inlet. The second problem is the flow in a divergent/convergent channel. In this case, the geometric parameter is the length of the channel. Comparisons of results with those obtained from the literature are performed, showing the efficiency of the proposed algorithm. The aim of this study is to determine the critical Reynolds numbers of the flow using few computations for each geometric parameter.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76D05 Navier-Stokes equations for incompressible viscous fluids
65N99 Numerical methods for partial differential equations, boundary value problems
Full Text: DOI

References:

[1] Alleborn, N.; Nandakumar, K.; Raszillier, H.; Durst, F., Further contributions on the two-dimensional flow in a sudden expansion, J Fluid Mech, 330, 169-188, (1997) · Zbl 0894.76023
[2] Battaglia, F.; Tavener, S. J.; Kulkarni, A. K.; Merkle, C. L., Bifurcation of low Reynolds number flows in symmetric channels, AIAA J, 35, 99-105, (1997) · Zbl 0893.76012
[3] Drikakis, D., Bifurcation phenomena in incompressible sudden expansion flows, Phys Fluids, 9, 1, 76-87, (1997)
[4] Durst, F.; Melling, A.; Whitelaw, J. H., Low Reynolds number flow over a plane symmetric sudden expansion, J Fluid Mech, 64, 1, 111-128, (1974)
[5] Cherdron, W.; Durst, F.; Whitelaw, J. H., Asymmetric flows and instabilities in symmetric ducts with sudden expansions, J Fluid Mech, 84, 01, 13, (2006)
[6] Fearn, R. M.; Mullin, T.; Cliffe, K. A., Nonlinear flow phenomena in a symmetric sudden expansion, J Fluid Mech, 211, 1, 595, (2006)
[7] Shapira, M.; Degani, D.; Weihs, D., Stability and existence of multiple solutions for viscous flow in suddenly enlarged channels, Comput Fluids, 18, 3, 239-258, (1990) · Zbl 0696.76053
[8] Mizushima, J.; Okamoto, H.; Yamaguchi, H., Stability of flow in a channel with a suddenly expanded part, Phys Fluids, 8, 11, 2933, (1996) · Zbl 1027.76562
[9] Allery, C.; Cadou, J. M.; Hamdouni, A.; Razafindralandy, D., Application of the asymptotic numerical method to the Coanda effect, Revue Européenne des Eléments finis, 13, 1-2, 57-77, (2004) · Zbl 1147.76600
[10] Huang, C. Y.; Hwang, F. N., Parallel pseudo-transient Newton-Krylov-Schwarz continuation algorithms for bifurcation analysis of incompressible sudden expansion flows, Appl Numer Math, 60, 7, 738-751, (2010) · Zbl 1425.76184
[11] Lanzerstorfer, D.; Kuhlmann, H. C., Global stability of multiple solutions in plane sudden-expansion flow, J Fluid Mech, 702, 378-402, (2012) · Zbl 1248.76060
[12] Sliva, G.; Brezillon, A.; Cadou, J. M.; Duigou, L., A study of the eigenvalue sensitivity by homotopy and perturbation methods, J Comput Appl Math, 234, 7, 2297-2302, (2010) · Zbl 1402.65029
[13] Massa, F.; Tison, T.; Lallemand, B.; Cazier, O., Structural modal reanalysis methods using homotopy perturbation and projection techniques, Comput Methods Appl Mech Eng, 200, 45-46, 2971-2982, (2011) · Zbl 1230.74229
[14] Lampoh, K.; Charpentier, I.; Daya, E. M., A generic approach for the solution of nonlinear residual equations. part III: sensitivity computations, Comput Methods Appl Mech Eng, 200, 45-46, 2983-2990, (2011) · Zbl 1230.74227
[15] Baguet, S.; Cochelin, B., On the behaviour of the ANM continuation in the presence of bifurcations, Commun Numer Methods Eng, 19, 6, 459-471, (2003) · Zbl 1022.65062
[16] Cadou, J.; Potier-Ferry, M.; Cochelin, B., A numerical method for the computation of bifurcation points in fluid mechanics, Eur J Mech - B/Fluids, 25, 2, 234-254, (2006) · Zbl 1084.76047
[17] Mallil, E.; Lahmam, H.; Damil, N.; Potier-Ferry, M., An iterative process based on homotopy and perturbation techniques, Comput Methods Appl Mech Eng, 190, 13-14, 1845-1858, (2000) · Zbl 1004.74079
[18] Damil, N.; Potier-Ferry, M.; Najah, A.; Chari, R.; Lahmam, H., An iterative method based upon Padé approximants, Commun Numer Methods Eng, 15, 10, 701-708, (1999) · Zbl 0943.65065
[19] He, J.-H., Comparison of homotopy perturbation method and homotopy analysis method, Appl Math Comput, 156, 2, 527-539, (2004) · Zbl 1062.65074
[20] Ramos, J. I., Piecewise homotopy methods for nonlinear ordinary differential equations, Appl Math Comput, 198, 1, 92-116, (2008) · Zbl 1137.65048
[21] Dale Martin, E., A technique for accelerating iterative convergence in numerical integration, with application in transonic aerodynamics, (Cabannes, H., Padé approximants method and its applications to mechanics, 47, (1976), Springer-Verlag Berlin/Heidelberg), 123-139 · Zbl 0328.76043
[22] Cadou, J. M.; Potier-Ferry, M.; Cochelin, B.; Damil, N., ANM for stationary Navier-Stokes equations and with Petrov-Galerkin formulation, Int J Numer Methods Eng, 50, 4, 825-845, (2001) · Zbl 1013.76046
[23] Brezillon, A.; Girault, G.; Cadou, J. M., A numerical algorithm coupling a bifurcating indicator and a direct method for the computation of Hopf bifurcation points in fluid mechanics, Comput Fluids, 39, 7, 1226-1240, (2010) · Zbl 1242.76113
[24] Jackson, C. P., A finite-element study of the onset of vortex shedding in flow past variously shaped bodies, J Fluid Mech, 182, 1, 23, (1987) · Zbl 0639.76041
[25] Guevel, Y.; Boutyour, H.; Cadou, J. M., Automatic detection and branch switching methods for steady bifurcation in fluid mechanics, J Comput Phys, 230, 9, 3614-3629, (2011) · Zbl 1316.76071
[26] Cochelin, B., A path-following technique via an asymptotic-numerical method, Comput Struct, 53, 5, 1181-1192, (1994) · Zbl 0918.73337
[27] Baker GA, Graves-Morris P. Pade approximants, 2nd ed. Cambridge: Cambridge University Press; 1996. · Zbl 0923.41001
[28] Najah, A.; Cochelin, B.; Damil, N.; Potier-Ferry, M., A critical review of asymptotic numerical methods, Arch Comput Methods Eng, 5, 1, 31-50, (1998)
[29] Damil, N.; Cadou, J. M.; Potier-Ferry, M., Mathematical and numerical connections between polynomial extrapolation and Padé approximants: applications in structural mechanics, Commun Numer Methods Eng, 20, 9, 699-707, (2004) · Zbl 1162.74497
[30] Zienkiewicz O, Taylor RL. The finite element method, 6th ed. Amsterdam [u.a.]: Elsevier; 2005. · Zbl 1084.74001
[31] Elhage-Hussein, A., A numerical continuation method based on Padé approximants, Int J Solids Struct, 37, 46-47, 6981-7001, (2000) · Zbl 0980.74021
[32] Cochelin, B.; Medale, M., Power series analysis as a major breakthrough to improve the efficiency of asymptotic numerical method in the vicinity of bifurcations, J Comput Phys, 236, 594-607, (2013)
[33] Medale, M.; Cochelin, B., A parallel computer implementation of the asymptotic numerical method to study thermal convection instabilities, J Comput Phys, 228, 22, 8249-8262, (2009) · Zbl 1422.76149
[34] Patel S, Drikakis D. Prediction of flow instabilities and transition using high-resolution methods. In: Proceedings of the European congress on computational methods in applied sciences and engineering; 2004.
[35] Girault, G.; Guevel, Y.; Cadou, J. M., An algorithm for the computation of multiple Hopf bifurcation points based on pade approximants, Int J Numer Methods Fluids, 68, 9, 1189-1206, (2012) · Zbl 1426.76263
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.