×

Piecewise homotopy methods for nonlinear ordinary differential equations. (English) Zbl 1137.65048

Summary: Piecewise homotopy perturbation methods are developed for the solution of nonlinear ordinary differential equations. These methods are based on the introduction of an artificial or book-keeping parameter and the expansion of the solution in a power series of this parameter and provide analytical solutions in open intervals which are smooth everywhere.
Three piecewise-adaptive homotopy perturbation methods based on the use of either a fixed number of approximants and a variable step size, a variable number of approximants and a fixed step size or a variable number of approximants and a variable step size, are presented and applied to eight nonlinear ordinary differential equations. It is shown that piecewise-adaptive homotopy perturbation methods predict essentially the same solutions as MATLAB’s variable-step, variable-order solvers and variable-order transition matrix techniques provided that five-term approximations of the decomposition method are applied to both the displacement and the velocity.
It is also shown that piecewise homotopy perturbation techniques that use three-term approximations to both the displacement and the velocity provide essentially the same results as those obtained with a second-order accurate time-linearization technique when the same step is employed in both schemes.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems

Software:

Matlab; HOMPACK
Full Text: DOI

References:

[1] He, Ji-H., Homotopy perturbation method: a new nonlinear analytical technique, Appl. Math. Comput., 135, 73-79 (2003) · Zbl 1030.34013
[2] He, Ji-H., Homotopy perturbation technique, Comput. Meth. Appl. Mech. Eng., 178, 257-262 (1999) · Zbl 0956.70017
[3] He, Ji-H., Asymptotology by homotopy perturbation method, Appl. Math. Comput., 156, 591-596 (2004) · Zbl 1061.65040
[4] He, Ji-H., Some asymptotic methods for strongly nonlinear equations, Int. J. Mod. Phys. B, 20, 1141-1199 (2006) · Zbl 1102.34039
[5] He, Ji-H., New interpretation of homotopy perturbation method, Int. J. Mod. Phys. B, 20, 2561-2568 (2006)
[6] Ji-H. He, Non-perturbative Methods for Strongly Nonlinear Problems, Dissertation, de-Verlag im Internet GmbH, Berlin, 2006.; Ji-H. He, Non-perturbative Methods for Strongly Nonlinear Problems, Dissertation, de-Verlag im Internet GmbH, Berlin, 2006.
[7] He, Ji-H., Application of homotopy perturbation method to nonlinear wave equations, Chaos Soliton. Fract., 36, 695-700 (2005) · Zbl 1072.35502
[8] Cveticanin, L., Homotopy-perturbation method for pure nonlinear differential equation, Chaos Soliton. Fract., 30, 1221-1230 (2006) · Zbl 1142.65418
[9] Beléndez, A.; Hernández, A.; Beléndez, T.; Fernández, E.; Álvarez, M. L.; Neipp, C., Application of He’s homotopy perturbation method to the Duffing-harmonic oscillator, Int. J. Non-linear Sci. Numer. Simulat., 8, 79-88 (2007)
[10] Beléndez, A.; Hernández, A.; Beléndez, T.; Neipp, C.; Márquez, A., Application of the homotopy perturbation method to the nonlinear pendulum, Eur. J. Phys., 28, 93-104 (2007) · Zbl 1119.70017
[11] Siddiqui, A.; Mahmood, R.; Ghori, Q., Thin film flow of a third grade fluid on moving a belt by He’s homotopy perturbation method, Int. J. Non-linear Sci. Numer. Simulat., 7, 15-26 (2006)
[12] Ganji, D. D.; Sadighi, A., Application of He’s homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations, Int. J. Non-linear Sci. Numer. Simulat., 7, 411-418 (2006)
[13] El-Shaded, M., Application of He’s homotopy perturbation method to Volterra’s integro-differential equation, Int. J. Non-linear Sci. Numer. Simulat., 6, 163-168 (2005) · Zbl 1401.65150
[14] Li, T. Y.; Sauer, T.; York, J. A., The cheater’s homotopy: an efficient procedure for solving systems of polynomial equations, SIAM J. Numer. Anal., 26, 1241-1251 (1989) · Zbl 0689.65032
[15] Morgan, A., Solving Polynomial Systems using Continuation for Engineering and Scientific Problems (1987), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0733.65031
[16] Watson, L. T.; Billips, S. C.; Morgan, A. P., Algorithm 652: HOMPACK: a suite of codes for globally convergent homotopy algorithms, ACM Trans. Math. Software, 13, 281-310 (1987) · Zbl 0626.65049
[17] Allgower, E.; Georg, K., Numerical Continuation Methods (1990), Springer: Springer New York · Zbl 0717.65030
[18] J.I. Ramos, On Linstedt-Poincaré techniques for the quintic Duffing equation, Appl. Math. Comput., in press, doi:10.1016/j.amc.2007.03.050; J.I. Ramos, On Linstedt-Poincaré techniques for the quintic Duffing equation, Appl. Math. Comput., in press, doi:10.1016/j.amc.2007.03.050 · Zbl 1193.65142
[19] J.I. Ramos, Linearized Galerkin and artificial parameter techniques for the determination of periodic solutions of nonlinear oscillators, Appl. Math. Comput., in press, doi:10.1016/j.amc.2007.06.010; J.I. Ramos, Linearized Galerkin and artificial parameter techniques for the determination of periodic solutions of nonlinear oscillators, Appl. Math. Comput., in press, doi:10.1016/j.amc.2007.06.010 · Zbl 1135.65344
[20] J.I. Ramos, Series approach to the Lane-Emden equation and comparison with the homotopy perturbation method, Chaos Soliton. Fract., in press, 2006.; J.I. Ramos, Series approach to the Lane-Emden equation and comparison with the homotopy perturbation method, Chaos Soliton. Fract., in press, 2006.
[21] Ramos, J. I., An artificial parameter-decomposition method for nonlinear oscillators: applications to oscillators with odd nonlinearities, J. Sound Vibr., 307, 312-329 (2007)
[22] Adomian, G., Stochastic Systems (1983), Academic Press, Inc.: Academic Press, Inc. New York · Zbl 0504.60067
[23] Adomian, G., Nonlinear Stochastic Operator Equations (1986), Academic Press, Inc.: Academic Press, Inc. New York · Zbl 0614.35013
[24] Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method (1994), Kluwer: Kluwer Boston · Zbl 0802.65122
[25] Adomian, G.; Rach, R., Noise terms in decomposition solution series, Comp. Math. Appl., 24, 61-64 (1992) · Zbl 0777.35018
[26] Wazwaz, A.-M., Necessary conditions for the appearance of noise terms in decomposition series solutions, Appl. Math. Comput., 81, 265-274 (1997) · Zbl 0882.65132
[27] Lesnic, D., A computational algebraic investigation of the decomposition method for time-dependent problems, Appl. Math. Comput., 119, 197-206 (2001) · Zbl 1023.65107
[28] Adomian, G.; Rach, R., The noisy convergence phenomena in decomposition method solutions, J. Comput. Appl. Math., 15, 379-381 (1986) · Zbl 0616.65084
[29] Wazwaz, A.-M., A reliable modification of Adomian decomposition method, Appl. Math. Comput., 102, 77-86 (1999) · Zbl 0928.65083
[30] Cherruault, Y., Convergence of Adomian’s method, Mathl. Comput. Model., 14, 83-86 (1990) · Zbl 0728.65056
[31] Cherruault, Y.; Adomian, G., Decomposition methods: a new proof of convergence, Math. Comput. Model., 18, 103-106 (1993) · Zbl 0805.65057
[32] Abbaoui, K.; Cherruault, Y., Convergence of Adomian’s method applied to nonlinear equations, Math. Comput. Model., 20, 69-73 (1994) · Zbl 0822.65027
[33] Abbaoui, K.; Cherruault, Y., Convergence of Adomian’s method applied to differential equations, Comp. Math. Appl., 28, 103-109 (1994) · Zbl 0809.65073
[34] Abbaoui, K.; Cherruault, Y., New ideas for proving convergence of decomposition methods, Comp. Math. Appl., 29, 103-108 (1995) · Zbl 0832.47051
[35] Cherruault, Y.; Saccomandi, G.; Some, B., New results for convergence of Adomian’s method applied to integral equations, Math. Comput. Model., 16, 85-93 (1992) · Zbl 0756.65083
[36] Adomian, G., Convergent series solution of nonlinear equations, J. Comput. Appl. Math., 11, 225-230 (1984) · Zbl 0549.65034
[37] Adomian, G., On the convergent region for decomposition solutions, J. Comput. Appl. Math., 11, 379-380 (1984) · Zbl 0547.65053
[38] Babolian, E.; Biazar, J., On the order of convergence of Adomian method, Appl. Math. Comput., 130, 383-387 (2002) · Zbl 1044.65043
[39] Ouedraogo, R. Z.; Cherruault, Y.; Abbaoui, K., Convergence of Adomian’s method applied to algebraic equations, Kybernetes, 29, 1289-1305 (2000) · Zbl 0994.65054
[40] Badredine, T.; Abbaoui, K.; Cherruault, Y., Convergence of Adomian’s method applied to integral equations, Kybernetes, 28, 557-564 (1999) · Zbl 0938.93023
[41] Gabet, L., The theoretical foundation of the Adomian method, Comp. Math. Appl., 27, 41-52 (1994) · Zbl 0805.65056
[42] Hartman, P., Ordinary Differential Equations (1964), John Wiley & Sons: John Wiley & Sons New York · Zbl 0125.32102
[43] Kelley, W.; Petterson, A., The Theory of Differential Equations: Classical and Qualitative (2004), Pearson Education, Inc.: Pearson Education, Inc. Upper Saddle River, NJ
[44] Zhu, Y.; Chang, Q.; Wu, S., A new algorithm for calculating Adomian polynomials, Appl. Math. Comput., 169, 402-416 (2005) · Zbl 1087.65528
[45] Babolian, E.; Javadi, Sh., New method for calculating Adomian polynomials, Appl. Math. Comput., 153, 253-259 (2004) · Zbl 1055.65068
[46] Abdelwahid, F., A mathematical model of Adomian polynomials, Appl. Math. Comput., 141, 447-453 (2003) · Zbl 1027.65072
[47] Wazwaz, A.-M., A new algorithm for calculating Adomian polynomials for nonlinear operators, Appl. Math. Comput., 111, 33-51 (2000)
[48] Ahlfors, L. V., Complex Analysis (1979), McGraw-Hill, Inc.: McGraw-Hill, Inc. New York · Zbl 0395.30001
[49] Adomian, G.; Rach, R.; Meyers, R., Numerical algorithms and decomposition, Comp. Math. Appl., 22, 57-61 (1991) · Zbl 0728.65068
[50] Adomian, G.; Rach, R. C.; Meyers, R. E., Numerical integration, analytic continuation, and decomposition, Appl. Math. Comput., 88, 95-116 (1997) · Zbl 0905.65079
[51] Zakrzewski, A. J., Highly precise solutions of the one-dimensional Schrödinger equation with an arbitrary potential, Comput. Phys. Commun., 175, 397-403 (2006) · Zbl 1196.81119
[52] Bellomo, N.; Monaco, R., A comparison between Adomian’s decomposition methods and perturbation techniques for nonlinear random differential equations, J. Math. Anal. Appl., 110, 495-502 (1985) · Zbl 0575.60064
[53] Ramos, J. I., A piecewise time-linearized method for the logistic differential equation, Appl. Math. Comput., 93, 139-148 (1998) · Zbl 0944.65087
[54] Ramos, J. I., Linearized methods for ordinary differential equations, Appl. Math. Comput., 104, 109-1299 (1999) · Zbl 0935.65071
[55] Ramos, J. I., Piecewise-linearized methods for oscillators with limit cycles, Chaos Soliton. Fract., 27, 1229-1238 (2006) · Zbl 1108.34030
[56] Ramos, J. I., Piecewise-linearized methods for single degree-of-freedom problems, Commun. Nonlinear Sci. Numer. Simul., 12, 1005-1022 (2007) · Zbl 1113.65070
[57] Ramos, J. I., Piecewise-linearized methods for initial-value problems with oscillating solutions, Appl. Math. Comput., 181, 123-146 (2006) · Zbl 1148.65056
[58] Ramos, J. I., Linearization techniques for singular initial-value problems of ordinary differential equations, Appl. Math. Comput., 161, 525-542 (2005) · Zbl 1061.65061
[59] Ramos, J. I., Non-standard, explicit integration algorithms based on linearization for nonlinear dynamics response analysis, Appl. Math. Comput., 159, 695-715 (2004) · Zbl 1063.65057
[60] Ramos, J. I., Linearization methods in classical and quantum mechanics, Comput. Phys. Commun., 153, 199-208 (2003) · Zbl 1196.81114
[61] Roman-Miller, L.; Broadbridge, P., Exact integration of reduced Fisher’s equation, reduced Blasius equation, and the Lorenz model, J. Math. Anal. Appl., 251, 65-83 (2000) · Zbl 0968.34002
[62] Rach, R., On the Adomian (decomposition) method and comparisons with Picard’s method, J. Math. Anal. Appl., 128, 480-483 (1987) · Zbl 0645.60067
[63] Bellomo, N.; Sarafayan, D., On Adomian’s decomposition method and some comparisons with Picard’s iterative scheme, J. Math. Anal. Appl., 123, 389-400 (1987) · Zbl 0624.60079
[64] Mahmood, A. S.; Casasús, L.; Al-Hayani, W., The decomposition method for stiff systems of ordinary differential equations, Appl. Math. Comput., 167, 964-975 (2005) · Zbl 1082.65561
[65] Knopp, K., Infinite Sequences and Series (1956), Dover Publications, Inc.: Dover Publications, Inc. New York · Zbl 0070.05807
[66] Schwab, C., p- and hp-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics (1999), Oxford University Press: Oxford University Press Oxford, United Kingdom
[67] Lambert, J. D., Numerical Methods for Ordinary Differential Systems (1991), John Wiley & Sons: John Wiley & Sons New York · Zbl 0745.65049
[68] Hairer, E.; Nørsett, S. P.; Wanner, G., Solving Ordinary Differential Equations I: Nonstiff Problems (1993), Springer-Verlag: Springer-Verlag New York · Zbl 0789.65048
[69] Bartels, R. E., A time integration algorithm based on the state transition matrix for structures with time varying and nonlinear properties, Comp. Struct., 81, 349-357 (2003)
[70] Kojouharov, H.; Welfert, B., A nonstandard Euler scheme for \(y\)″+g(y)y′+\(f(y)=0\), J. Comput. Appl. Math., 151, 335-353 (2003) · Zbl 1018.65091
[71] Liao, S.-J., An analytic approximate technique for free oscillations of positively damped systems with algebraically decaying amplitude, Int. J. Nonlinear Mech., 38, 1173-1183 (2003) · Zbl 1348.74225
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.