×

A 3-D volume-of-fluid advection method based on cell-vertex velocities for unstructured meshes. (English) Zbl 1391.76554

Summary: A new geometrical volume-of-fluid (VOF) method for capturing interfaces on three-dimensional (3-D) Cartesian and unstructured meshes is introduced. The method reconstructs interfaces as first- and second-order piecewise planar approximations (PLIC), and advects volumes in a single unsplit Lagrangian-Eulerian (LE) geometrical algorithm based on constructing flux polyhedrons by tracing back the Lagrangian trajectories of the cell-vertex velocities. In this way, the situations of overlapping between flux polyhedrons are minimized, consequently, the accuracy in the solution of the advection equation is improved by minimizing the creation of overshoots (volume fractions over one), undershoots (volume fractions below zero) and wisps (fluid in void regions or vice versa). However, if not treated carefully, the use of cell-vertex velocities may result in the construction of flux polyhedrons that contain nonplanar faces and that do not conserve volume. Therefore, this work explains in detail a set of geometric algorithms necessary to overcome these two drawbacks. In addition, the new VOF method is analyzed numerically on 3-D Cartesian and unstructured meshes, first, by reconstructing the interface of spherical geometries and, second, by evaluating the final advection result of a sphere placed in a rotation, shear and deformation field.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76Txx Multiphase and multicomponent flows
65M85 Fictitious domain methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Scardovelli, R.; Zaleski, S., Direct numerical simulation of free-surface and interfacial flow, Annu Rev Fluid Mech, 31, 567-603, (1999)
[2] Hirt, C. W.; Cook, J. L.; Butler, T. D., A Lagrangian method for calculating the dynamics of an incompressible fluid with free surface, J Comput Phys, 5, 103-124, (1970) · Zbl 0194.57704
[3] Maury, B.; Pironneau, O., Characteristics ALE method for the unsteady 3D Navier-Stokes equations with a free surface, Int J Comput Fluid Dynam, 6, 175-188, (1996)
[4] Hirt, C. W.; Amsden, A. A.; Cook, J. L., An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J Comput Phys, 135, 203-216, (1997) · Zbl 0938.76068
[5] Hu, H. H.; Patankar, N. A.; Zhu, M. Y., Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian-Eulerian technique, J Comput Phys, 169, 427-462, (2001) · Zbl 1047.76571
[6] Harlow, F. H.; Welch, J. E., Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys Fluids, 8, 2182-2189, (1965) · Zbl 1180.76043
[7] Peskin, C. S., Numerical analysis of blood flow in the heart, J Comput Phys, 25, 220-252, (1977) · Zbl 0403.76100
[8] Unverdi, S. O.; Tryggvason, G., A front-tracking method for viscous, incompressible, multi-fluid flows, J Comput Phys, 100, 25-37, (1992) · Zbl 0758.76047
[9] Tryggvason, G.; Bunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawashi, N.; Tauber, W., A front-tracking method for the computations of multiphase flow, J Comput Phys, 169, 708-759, (2001) · Zbl 1047.76574
[10] Du, J.; Fix, B.; Glimm, J.; Jia, X.; Li, X.; Li, Y., A simple package for front tracking, J Comput Phys, 213, 613-628, (2006) · Zbl 1089.65128
[11] Hirt, C. W.; Nichols, B. D., Volume of fluid (VOF) method for the dynamics of free boundaries, J Comput Phys, 39, 201-225, (1981) · Zbl 0462.76020
[12] Rider, W. J.; Kothe, D. B., Reconstructing volume tracking, J Comput Phys, 141, 112-152, (1998) · Zbl 0933.76069
[13] Renardy, Y.; Renardy, M., PROST: a parabolic reconstruction of surface tension for the volume-of-fluid method, J Comput Phys, 183, 400-421, (2002) · Zbl 1057.76569
[14] Liovic, P.; Rudman, M.; Liow, J. L.; Lakehal, D.; Kothe, D., A 3D unsplit-advection volume tracking algorithm with planarity-preserving interface reconstruction, Comput Fluids, 35, 1011-1032, (2006) · Zbl 1177.76292
[15] Osher, S.; Sethian, J., Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations, J Comput Phys, 79, 12-49, (1988) · Zbl 0659.65132
[16] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J Comput Phys, 114, 146-159, (1994) · Zbl 0808.76077
[17] Olsson, E.; Kreiss, G., A conservative level set method for two phase flow, J Comput Phys, 210, 225-246, (2005) · Zbl 1154.76368
[18] Desjardins, O.; Moureau, V.; Pitsch, H., An accurate conservative level set/ghost fluid method for simulating turbulent atomization, J Comput Phys, 227, 8395-8416, (2008) · Zbl 1256.76051
[19] Sussman, M.; Puckett, E. G., A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows, J Comput Phys, 162, 301-3337, (2000) · Zbl 0977.76071
[20] Sussman, M., A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles, J Comput Phys, 187, 110-136, (2003) · Zbl 1047.76085
[21] Yang, X.; James, A. J.; Lowengrub, J.; Zheng, X.; Cristini, V., An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids, J Comput Phys, 217, 364-394, (2006) · Zbl 1160.76377
[22] Maury, B., Direct simulations of 2D fluid-particle flows in biperiodic domains, J Comput Phys, 156, 325-351, (1999) · Zbl 0958.76045
[23] D’Avino, G.; Hulsen, M. A.; Maffettone, P. L., Dynamics of pairs and triplets of particles in a viscoelastic fluid flowing in a cylindrical channel, Comput Fluids, 86, 45-55, (2013) · Zbl 1290.76012
[24] Esmaeeli, A.; Tryggvason, G., Direct numerical simulations of bubbly flows. part 1. low Reynolds number arrays, J Fluid Mech, 377, 313-345, (1998) · Zbl 0934.76090
[25] Esmaeeli, A.; Tryggvason, G., Direct numerical simulations of bubbly flows. part 2. moderate Reynolds number arrays, J Fluid Mech, 385, 325-358, (1999) · Zbl 0945.76087
[26] Dabiri, S.; Lu, J.; Tryggvason, G., Transition between regimes of a vertical channel bubbly upflow due to bubble deformability, Phys Fluids, 25, 102110, (2013)
[27] Fuster, D.; Bague, A.; Boeck, T.; Moyne, L.; Leboissetier, A.; Popinet, S., Simulation of primary atomization with an octree adaptive mesh refinement and VOF method, Int J Multiphase Flow, 35, 550-565, (2009)
[28] Afkhami, S.; Leshansky, A. M.; Renardy, Y., Numerical investigation of elongated drops in a microfluidic T-junction, Phys Fluids, 23, 022002, (2011) · Zbl 1308.76206
[29] Ohta, M.; Sussman, M., The buoyancy-driven motion of a single skirted bubble or drop rising through a viscous liquid, Phys Fluids, 24, 112101, (2012)
[30] Muzaferija, S.; Perić, M., Computation of free-surface flows using interface-tracking and interface-capturing methods, (Nonlinear water wave interaction, (1998), Computational Mechanics Publications Southampton)
[31] Ubbink, O.; Issa, R., A method for capturing sharp fluid interfaces on arbitrary meshes, J Comput Phys, 153, 26-50, (1999) · Zbl 0955.76058
[32] Darwish, M.; Moukalled, F., Convective schemes for capturing interfaces of free-surface flows on unstructured grids, Numer Heat Transfer, Part B: Fundam, 49, 19-42, (2006)
[33] Lv, X.; Zou, Q.; Zhao, Y.; Reeve, D., A novel coupled level set and volume of fluid method for sharp interface capturing on 3D tetrahedral grids, J Comput Phys, 229, 2573-2604, (2010) · Zbl 1423.76303
[34] López, J.; Hernández, J.; Gómez, P.; Faura, F., A volume of fluid method based on multidimensional advection and spline interface reconstruction, J Comput Phys, 195, 718-742, (2004) · Zbl 1115.76358
[35] Hernández, J.; López, J.; Gómez, P.; Zanzi, C.; Faura, F., A new volume of fluid method in three dimensions - part I: multidimensional advection method with face-matched flux polyhedra, Int J Numer Methods Fluids, 58, 897-921, (2008) · Zbl 1151.76552
[36] Scardovelli, R.; Zaleski, S., Interface reconstruction with least-squares fit and split eulerian-Lagrangian advection, Int J Numer Methods Fluids, 41, 251-274, (2003) · Zbl 1047.76080
[37] Youngs, D. L., Time-dependent multi-material flow with large fluid distortion, (Numerical methods for fluid dynamics, (1982), Academic Press New York), 273-285 · Zbl 0537.76071
[38] Pilliod JE, Puckett EG. Second-order volume-of-fluid algorithms for tracking material interfaces. Technical report LBNL-40744, Lawrence Berkeley National Laboratory; 1997.
[39] Pilliod, J. E.; Puckett, E. G., Second-order accurate volume-of-fluid algorithms for tracking material interfaces, J Comput Phys, 199, 465-502, (2004) · Zbl 1126.76347
[40] Miller, G. H.; Colella, P., A conservative three-dimensional Eulerian method for coupled solid-fluid shock capturing, J Comput Phys, 183, 26-82, (2002) · Zbl 1057.76558
[41] Fan, E. S.-C.; Bussmann, M., Piecewise linear volume tracking in spherical coordinates, Appl Math Modell, 37, 3077-3092, (2013) · Zbl 1351.76214
[42] Kothe DB, Rider WJ, Mosso SJ, Brock JS, Hochstein JI. Volume tracking of interface having surface tension in two and three dimensions. In: Proceedings of the 34th AIAA aerospace sciences meeting and exhibit; 1996. p. 1-24.
[43] Mosso SJ, Swartz BK, Kothe DB, Ferrell RC, A parallel, volume-tracking algorithm for unstructured meshes. Technical Report LA-UR-96-2420, Los Alamos National Laboratory, 1996.
[44] Mencinger, J.; Žun, I., A PLIC-VOF method suited for adaptive moving grids, J Comput Phys, 230, 644-663, (2011) · Zbl 1283.76054
[45] Marić T, Marschall H, Bothe D. A geometrical volume of fluid algorithm on arbitrary unstructured meshes with local dynamic adaptive mesh refinement using OpenFOAM; 2013. p. 1-30. arXiv preprint arXiv:1305.3417.
[46] Ahn, H. T.; Shashkov, M., Multi-material interface reconstruction on generalized polyhedral meshes, J Comput Phys, 226, 2096-2132, (2011) · Zbl 1388.76232
[47] Dyadechko V, Shashkov M. Moment-of-fluid interface reconstruction. Technical report, Los Alamos National Laboratory; 2005. · Zbl 1220.76048
[48] Mosso, S. J.; Garasi, C.; Drake, R., A smoothed two- and three-dimensional interface reconstruction method, Comput Visualiz Sci, 12, 365-381, (2009) · Zbl 1213.65037
[49] Shahbazi, K.; Paraschivoiu, M.; Mostaghimi, J., Second order accurate volume tracking based on remapping for triangular grids, J Comput Phys, 188, 100-122, (2003) · Zbl 1127.76337
[50] Ashgriz, N.; Barbat, T.; Wang, G., A computational Lagrangian-Eulerian advection remap for free surface flows, Int J Numer Methods Fluids, 44, 1-32, (2004) · Zbl 1062.76041
[51] Ivey C, Moin P. Conservative volume of fluid advection method on unstructured grids in three dimensions. Center for Turbulence Research, Annual Research Briefs; 2012. p. 179-92.
[52] Jofre L, Lehmkuhl O, Castro J, Oliva A. A PLIC-VOF implementation on parallel 3D unstructured meshes. In: Proceedings of the fifth European conference on computational fluid dynamics, ECCOMAS CFD 2010; 2010. p. 1-16.
[53] Parker B, Youngs D. Two and three dimensional Eulerian simulation of fluid flow with material interfaces. Technical report 01/92, UK Atomic Weapons Establishment; 1992.
[54] Leonard, B. P.; Niknafs, H. S., Sharp monotonic resolution of discontinuities without clipping of narrow extrema, Comput Fluids, 19, 141-154, (1991) · Zbl 0721.76060
[55] Darwish, M., A new high-resolution scheme based on the normalized variable formulation, Numer Heat Transfer, Part B: Fundam, 24, 353-373, (1993)
[56] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical recipes in C++, (2002), Cambridge University Press · Zbl 1078.65500
[57] Haselbacher, A.; Vasilyev, V., Commutative discrete filtering on unstructured grids based on least-squares techniques, J Comput Phys, 187, 197-211, (2003) · Zbl 1047.76581
[58] López, J.; Hernández, J., Analytical and geometrical tools for 3D volume of fluid methods in general grids, J Comput Phys, 227, 5939-5948, (2008) · Zbl 1142.76042
[59] Tuzikov, A. V.; Sheynin, S. A.; Vasiliev, P. V., Computation of volume and surface body moments, Pattern Recogn, 36, 2521-2529, (2003)
[60] Harvie, D. J.E.; Fletcher, D. F., A new volume of fluid advection algorithm: the stream scheme, J Comput Phys, 162, 1-32, (2000) · Zbl 0964.76068
[61] Lehmkuhl O, Pérez-Segarra CD, Borrell R, Soria M, Oliva A. TERMOFLUIDS: a NewParallel unstructured CFD code for the simulation of turbulent industrial problems on low cost PC cluster. In: Proceedings of the parallel CFD 2007 conference; 2007. p. 1-8.
[62] Aulisa, E.; Manservisi, S.; Scardovelli, R.; Zaleski, S., Interface reconstruction with least-squares fit and split advection in three-dimensional Cartesian geometry, J Comput Phys, 225, 2301-2319, (2007) · Zbl 1118.76048
[63] LeVeque, R. J., High-resolution conservative algorithms for advection in incompressible flow, SIAM J Numer Anal, 33, 627-665, (1996) · Zbl 0852.76057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.