×

Electric-magnetic duality of abelian gauge theory on the four-torus, from the fivebrane on \(T^2\times T^4\), via their partition functions. (English) Zbl 1388.81309

Summary: We compute the partition function of four-dimensional abelian gauge theory on a general four-torus \(T^4\) with flat metric using Dirac quantization. In addition to an \(\mathrm{ SL}(4,\mathcal Z)\) symmetry, it possesses \(\mathrm{ SL}(2,\mathcal Z)\) symmetry that is electromagnetic S-duality. We show explicitly how this \(\mathrm{ SL}(2,\mathcal Z)\) S-duality of the \(4d\) abelian gauge theory has its origin in symmetries of the \(6d\) \((2,0)\) tensor theory, by computing the partition function of a single fivebrane compactified on \(T^2\) times \(T^4\), which has \(\mathrm{ SL}(2,\mathcal Z)\times\mathrm{ SL}(4,\mathcal Z)\) symmetry. If we identify the couplings of the abelian gauge theory \(\tau=\frac{\theta}{2\pi}+i\frac{4\pi} {e^2}\) with the complex modulus of the \(T^2\) torus \(\tau=\beta^2+i\frac{R_1} {R_2}\), then in the small \(T^2\) limit, the partition function of the fivebrane tensor field can be factorized, and contains the partition function of the \(4d\) gauge theory. In this way the \(\mathrm{ SL}(2,\mathcal Z)\) symmetry of the 6d tensor partition function is identified with the \(S\)-duality symmetry of the 4d gauge partition function. Each partition function is the product of zero mode and oscillator contributions, where the \(\mathrm{ SL}(2,\mathcal Z)\) acts suitably. For the 4d gauge theory, which has a Lagrangian, this product redistributes when using path integral quantization.

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory

References:

[1] C. Montonen and D.I. Olive, Magnetic monopoles as gauge particles?, Phys. Lett.B 72 (1977) 117 [INSPIRE]. · doi:10.1016/0370-2693(77)90076-4
[2] P. Goddard, J. Nuyts and D.I. Olive, Gauge theories and magnetic charge, Nucl. Phys.B 125 (1977) 1 [INSPIRE]. · doi:10.1016/0550-3213(77)90221-8
[3] E. Witten and D.I. Olive, Supersymmetry algebras that include topological charges, Phys. Lett.B 78 (1978) 97 [INSPIRE]. · doi:10.1016/0370-2693(78)90357-X
[4] C. Vafa and E. Witten, A strong coupling test of S duality, Nucl. Phys.B 431 (1994) 3 [hep-th/9408074] [INSPIRE]. · Zbl 0964.81522 · doi:10.1016/0550-3213(94)90097-3
[5] V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys.313 (2012) 71 [arXiv:0712.2824] [INSPIRE]. · Zbl 1257.81056 · doi:10.1007/s00220-012-1485-0
[6] E. Witten, Geometric Langlands from six dimensions, arXiv:0905.2720 [INSPIRE]. · Zbl 1216.81129
[7] E. Witten, Some comments on string dynamics, in Future perspectives in string theory, Los Angeles U.S.A. (1995), pg. 501 [hep-th/9507121] [INSPIRE].
[8] E. Witten, Conformal field theory in four and six dimensions, arXiv:0712.0157 [INSPIRE]. · Zbl 1101.81096
[9] E.P. Verlinde, Global aspects of electric-magnetic duality, Nucl. Phys.B 455 (1995) 211 [hep-th/9506011] [INSPIRE]. · Zbl 0925.58107 · doi:10.1016/0550-3213(95)00431-Q
[10] E. Witten, Five-brane effective action in M-theory, J. Geom. Phys.22 (1997) 103 [hep-th/9610234] [INSPIRE]. · Zbl 0878.58063 · doi:10.1016/S0393-0440(97)80160-X
[11] M.B. Green, J.H. Schwarz and E. Witten, Superstring theory, volume 2, Cambridge University Press, Cambridge U.K. (1987), pg. 40 [INSPIRE]. · Zbl 0619.53002
[12] L. Dolan and C.R. Nappi, A modular invariant partition function for the five-brane, Nucl. Phys.B 530 (1998) 683 [hep-th/9806016] [INSPIRE]. · Zbl 0961.81082 · doi:10.1016/S0550-3213(98)00537-9
[13] L. Dolan and C.R. Nappi, The Ramond-Ramond selfdual five form’s partition function on T10, Mod. Phys. Lett.A 15 (2000) 1261 [hep-th/0005074] [INSPIRE]. · doi:10.1142/S0217732300001547
[14] D. Bak and A. Gustavsson, M5/D4 brane partition function on a circle bundle, JHEP12 (2012) 099 [arXiv:1209.4391] [INSPIRE]. · Zbl 1397.81411 · doi:10.1007/JHEP12(2012)099
[15] R. Zucchini, Abelian duality and Abelian Wilson loops, Commun. Math. Phys.242 (2003) 473 [hep-th/0210244] [INSPIRE]. · Zbl 1047.81058 · doi:10.1007/s00220-003-0942-1
[16] E. Witten, On S duality in Abelian gauge theory, Selecta Math.1 (1995) 383 [hep-th/9505186] [INSPIRE]. · Zbl 0833.53024 · doi:10.1007/BF01671570
[17] L. Dolan and Y. Sun, Partition functions for Maxwell theory on the five-torus and for the fivebrane on S1× T5, JHEP09 (2013) 011 [arXiv:1208.5971] [INSPIRE]. · doi:10.1007/JHEP09(2013)011
[18] M. Henningson, The quantum Hilbert space of a chiral two form in d = (5 + 1)-dimensions, JHEP03 (2002) 021 [hep-th/0111150] [INSPIRE]. · doi:10.1088/1126-6708/2002/03/021
[19] H. Kikuchi, Poincaré invariance in temporal gauge canonical quantization and theta vacua, Int. J. Mod. Phys.A 9 (1994) 2741 [hep-th/9302045] [INSPIRE]. · Zbl 0985.81775 · doi:10.1142/S0217751X94001114
[20] P.A.M. Dirac, Lectures on quantum mechanics, Belfer Graduate School of Science, Yeshiva University, New York U.S.A. (1964).
[21] A. Das, Lectures on quantum field theory, World Scientific, Hackensack U.S.A. (2008) [INSPIRE]. · Zbl 1156.81002 · doi:10.1142/6938
[22] M. Abramowitz and I. Stegun, Handbook of mathematical functions, Dover Publications, New York U.S.A. (1972). · Zbl 0543.33001
[23] D. Gaiotto, N = 2 dualities, JHEP08 (2012) 034 [arXiv:0904.2715] [INSPIRE]. · Zbl 1397.81362 · doi:10.1007/JHEP08(2012)034
[24] D. Gaiotto, G.W. Moore and A. Neitzke, Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys.299 (2010) 163 [arXiv:0807.4723] [INSPIRE]. · Zbl 1225.81135 · doi:10.1007/s00220-010-1071-2
[25] L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys.91 (2010) 167 [arXiv:0906.3219] [INSPIRE]. · Zbl 1185.81111 · doi:10.1007/s11005-010-0369-5
[26] O. Aharony, N. Seiberg and Y. Tachikawa, Reading between the lines of four-dimensional gauge theories, JHEP08 (2013) 115 [arXiv:1305.0318] [INSPIRE]. · Zbl 1342.81248 · doi:10.1007/JHEP08(2013)115
[27] Y. Tachikawa, On the 6d origin of discrete additional data of 4d gauge theories, JHEP05 (2014) 020 [arXiv:1309.0697] [INSPIRE]. · doi:10.1007/JHEP05(2014)020
[28] T. Okuda and V. Pestun, On the instantons and the hypermultiplet mass of N = 2∗ super Yang-Mills on S4, JHEP03 (2012) 017 [arXiv:1004.1222] [INSPIRE]. · Zbl 1309.81168 · doi:10.1007/JHEP03(2012)017
[29] N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys.7 (2004) 831 [hep-th/0206161] [INSPIRE]. · Zbl 1056.81068 · doi:10.4310/ATMP.2003.v7.n5.a4
[30] N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, hep-th/0306238 [INSPIRE]. · Zbl 1233.14029
[31] A. Gadde, S. Gukov and P. Putrov, Fivebranes and 4-manifolds, arXiv:1306.4320 [INSPIRE]. · Zbl 1373.81295
[32] A. Gadde, S. Gukov and P. Putrov, (0, 2) trialities, JHEP03 (2014) 076 [arXiv:1310.0818] [INSPIRE]. · doi:10.1007/JHEP03(2014)076
[33] G. Etesi and A. Nagy, S-duality in Abelian gauge theory revisited, J. Geom. Phys.61 (2011) 693 [arXiv:1005.5639] [INSPIRE]. · Zbl 1207.81069 · doi:10.1016/j.geomphys.2010.12.007
[34] A. Giveon, M. Porrati and E. Rabinovici, Target space duality in string theory, Phys. Rept.244 (1994) 77 [hep-th/9401139] [INSPIRE]. · doi:10.1016/0370-1573(94)90070-1
[35] H. Coxeter and W. Moser, Generators and relations for discrete groups, Springer Verlag, New York U.S.A. (1980). · Zbl 0422.20001 · doi:10.1007/978-3-662-21943-0
[36] S. Trott, A pair of generators for the unimodular group, Canad. Math. Bull.5 (1962) 245. · Zbl 0107.02503 · doi:10.4153/CMB-1962-024-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.