×

Superconvergence and recovery type a posteriori error estimation for hybrid stress finite element method. (English) Zbl 1388.74091

Summary: Superconvergence and recovery type a posteriori error estimators are analyzed for Pian and Sumihara’s 4-node hybrid stress quadrilateral finite element method for linear elasticity problems. Superconvergence of order \(O(h^{1+\min\{\alpha,1\}})\) is established for both the displacement approximation in \(H^1\)-norm and the stress approximation in \(L^2\)-norm under a mesh assumption, where \(\alpha > 0\) is a parameter characterizing the distortion of meshes from parallelograms to quadrilaterals. Recovery type approximations for the displacement gradients and the stress tensor are constructed, and a posteriori error estimators based on the recovered quantities are shown to be asymptotically exact. Numerical experiments confirm the theoretical results.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74B05 Classical linear elasticity
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs

References:

[1] Arnold D N, Boffi D, Falk R. Approximation of quadrilateral finite elements. Math Comp, 2002, 71: 909-922 · Zbl 0993.65125 · doi:10.1090/S0025-5718-02-01439-4
[2] Babuska I, Strouboulis T. The Finite Element Method and Its Reliability. London: Oxford University Press, 2001 · Zbl 0995.65501
[3] Bank R E, Xu J. Asymptotically exact a posteriori error estimators, Part I: Grids with superconvergence. SIAM J Numer Anal, 2003, 41: 2294-2312 · Zbl 1058.65116 · doi:10.1137/S003614290139874X
[4] Bank R E, Xu J. Asymptotically exact a posteriori error estimators, Part II: General unstructured grids. SIAM J Numer Anal, 2003, 41: 2313-2332 · Zbl 1058.65117 · doi:10.1137/S0036142901398751
[5] Chen C. Structure Theory of Superconvergence of Finite Elements (in Chinese). Changsha: Hunan Science Press, 2001
[6] Chen C, Huang Y. Hign Accuracy Theory of Finite Element Methods (in Chinese). Changsha: Hunan Science Press, 1995
[7] Ewing R E, Liu M M, Wang J. Superconvergence of mixed finite element approximations over quadrilaterals. SIAM J Numer Anal, 1999, 36: 772-787 · Zbl 0926.65107 · doi:10.1137/S0036142997322801
[8] Heimsund B, Tai X C, Wang J. Superconvergence for the gradient of finite element approximations by L2 projections. SIAM J Numer Anal, 2002, 40: 1263-1280 · Zbl 1047.65095 · doi:10.1137/S003614290037410X
[9] Hu J, Zhang S. A family of symmetric mixed finite elements for linear elasticity on tetrahedral grids. Sci China Math, 2015, 58: 297-307 · Zbl 1308.74148 · doi:10.1007/s11425-014-4953-5
[10] Huang Y, Xu J. Superconvergence of quadratic finite elements on mildly structured grids. Math Comp, 2008, 77: 1253-1268 · Zbl 1195.65193 · doi:10.1090/S0025-5718-08-02051-6
[11] Jamet P. Estimation of the interpolation error for quadrilateral finite elements which can degenerate into triangles. SIAM J Numer Anal, 1977, 4: 925-930 · Zbl 0383.65009 · doi:10.1137/0714062
[12] Lakhany A M, Marek I, Whiteman J R. Superconvergence results on mildly structured triangulations. Comput Methods Appl Mech Engrg, 2000, 189: 1-75 · Zbl 0969.65097 · doi:10.1016/S0045-7825(99)00281-9
[13] Li B, Zhang Z. Analysis of a class of superconvergence patch recovery techniques for linear and bilinear finite elements. Numer Meth PDEs, 1999, 15: 151-167 · Zbl 0920.65067 · doi:10.1002/(SICI)1098-2426(199903)15:2<151::AID-NUM2>3.0.CO;2-O
[14] Li Z C, Huang H T, Yan N. Global Superconvergence of Finite Elements for Elliptic Equations and Its Applications. Beijing: Science Press, 2012
[15] Lin Q, Yan N. Construction and Analysis of Hign Efficient Finite Elements (in Chinese). Baoding: Hebei University Press, 1996
[16] Ming P B, Shi Z C. Quadrilateral mesh revisited. Comput Meth Appl Mech Engrg, 2002, 191: 5671-5682 · Zbl 1035.65147 · doi:10.1016/S0045-7825(02)00471-1
[17] Ming P B, Shi Z C, Xu Y. Superconvergence studies of quadrilateral nonconforming rotated Q1 elements. Int J Numer Anal Model, 2006, 3: 322-332 · Zbl 1096.65109
[18] Naga A, Zhang Z. The polynomial-preserving recovery for higher order finite element methods in 2D and 3D. Discrete Contin Dyn Syst Ser B, 2005, 5: 769-798 · Zbl 1078.65108 · doi:10.3934/dcdsb.2005.5.769
[19] Pian T H H. Derivation of element stiffness matrices by assumed stress distributions. AIAA J, 1964, 2: 1333-1336 · doi:10.2514/3.2546
[20] Pian T H H. State-of-the-art development of hybrid/mixed finite element method. Finite Elem Anal Des, 1995, 21: 5-20 · Zbl 0875.73310 · doi:10.1016/0168-874X(95)00024-2
[21] Pian T H H, Sumihara K. Rational approach for assumed stress finite element methods. Int J Numer Meth Engrg, 1984, 20: 1685-1695 · Zbl 0544.73095 · doi:10.1002/nme.1620200911
[22] Pian T H H, Wu C. Hybrid and Incompatible Finite Element Methods. Boca Raton: CRC Press, 2006 · Zbl 1110.65003
[23] Piltner R. An alternative version of the Pian-Sumihara element with a simple extension to non-linear problems. Comput Mech, 2000, 26: 483-489 · Zbl 0996.74077 · doi:10.1007/s004660000198
[24] Schatz A H, Sloan I H, Wahlbin L B. Superconvergence in finite element methods and meshes that are symmetric with respect to a point. SIAM J Numer Anal, 1996, 33: 505-521 · Zbl 0855.65115 · doi:10.1137/0733027
[25] Shi Z C. A convergence condition for the quadrilateral wilson element. Numer Math, 1984, 44: 349-361 · Zbl 0581.65008 · doi:10.1007/BF01405567
[26] Shi Z C, Jiang B, Xue W. A new superconvergence property of Wilson nonconforming finite element. Numer Math, 1997, 78: 259-268 · Zbl 0897.65063 · doi:10.1007/s002110050312
[27] Shi Z C, Xu X, Zhang Z. The patch recovery for finite element approximation of elasticity problems under quadrilateral meshes. Discrete Contin Dyn Syst Ser B, 2008, 9: 163-182 · Zbl 1141.74042
[28] Wahlbin L B. Superconvergence in Galerkin Finite Element Methods. Berlin: Springer, 1995 · Zbl 0826.65092 · doi:10.1007/BFb0096835
[29] Wu Y, Xie X, Chen L. Hybrid stress finite volume method for linear elasticity problems. Int J Numer Anal Mod, 2013, 10: 634-656 · Zbl 1421.74106
[30] Xie X, Xu J. New mixed finite elements for plane elasticity and Stokes equation. Sci China Math, 2011, 54: 1499-1519 · Zbl 1235.74324 · doi:10.1007/s11425-011-4171-3
[31] Xie X, Zhou T. Optimization of stress modes by energy compatibility for 4-node hybrid quadrilaterals. Int J Numer Meth Engrg, 2004, 59: 293-313 · Zbl 1047.74070 · doi:10.1002/nme.877
[32] Yan N. Superconvergence Analysis and A Posteriori Error Estimation in Finite Element Methods. Beijing: Science Press, 2008
[33] Yu G, Xie X, Carstense C. Uniform convergence and a posterior error estimation for assumed stress hybrid finite element methods. Comput Meth Appl Mech Engrg, 2011, 200: 2421-2433 · Zbl 1230.74205 · doi:10.1016/j.cma.2011.03.018
[34] Zhang S, Xie X. Accurate 8-Node hybrid hexahedral elements energy-compatible stress modes. Adv Appl Math Mech, 2010, 2: 333-354
[35] Zhang Z. Analysis of some quadrilateral nonconforming elements for incompressible elasiticity. SIAM J Numer Anal, 1997, 34: 640-663 · Zbl 0870.73074 · doi:10.1137/S0036142995282492
[36] Zhang Z. Ultraconvergence of the patch recovery technique II. Math Comp, 2000, 69: 141-158 · Zbl 0936.65132 · doi:10.1090/S0025-5718-99-01205-3
[37] Zhang Z. Polynomial preserving gradient recovery and a posterori estimate for bilinear element on irregular quadrialterals. Int J Numer Anal Model, 2004, 1: 1-24 · Zbl 1071.65145
[38] Zhang Z, Naga A. A new finite element gradient recovery method: Superconvergence property. SIAM J Sci Comput, 2005, 26: 1192-1213 · Zbl 1078.65110 · doi:10.1137/S1064827503402837
[39] Zhou T, Nie Y. Combined hybird approach to finite element schemes of high performance. Int J Numer Meth Engrg, 2001, 51: 181-202 · Zbl 0983.74078 · doi:10.1002/nme.151
[40] Zhou T, Xie X. A unified analysis for stress/strain hybrid methods of high performance. Comput Meth Appl Meth Engrg, 2002, 191: 4619-4640 · Zbl 1039.74052 · doi:10.1016/S0045-7825(02)00396-1
[41] Zhu Q D, Lin Q. Superconvergence Theory of the Finite Element Method (in Chinese). Changsha: Hunan Science Press, 1989
[42] Zienkiewicz O C, Zhu J Z. The superconvergence pach recovery and a posteriori error estimates, Part 1: The recovery technique. Int J Numer Meth Engrg, 1992, 33: 1331-1364 · Zbl 0769.73084 · doi:10.1002/nme.1620330702
[43] Zlamal M. Superconvergence and reduced integration in the finite element method. Math Comp, 1977, 32: 663-685 · Zbl 0448.65068 · doi:10.2307/2006479
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.