×

Quantitative quantum ergodicity and the nodal domains of Hecke-Maass cusp forms. (English) Zbl 1388.58021

Let \(\mathbb{X}=\Gamma\backslash\mathbb{H}\) be the modular surface, where \(\mathbb{H}\) is the Poincaré upper half-plane and \(\Gamma=SL_2(\mathbb{Z})\) is the modular group. Let \(\phi\) be an \(L^2\)-normalized Hecke-Maaß cusp form on \(\mathbb{X}\). It is an eigenform for the Laplace-Beltrami operator on \(\mathbb{X}\) and all the Hecke operators. Write \(\lambda_\phi=1/4+t_\phi^2\) for the eigenvalue of \(\phi\) for the Laplace-Beltrami operator on \(\mathbb{X}\).
The map \(x+iy\mapsto -x+iy\) induces an orientation reversing isometric involution \(\sigma\) on \(\mathbb{X}\). Since \(\sigma\) commutes with the Laplace–Beltrami operator and all the Hecke operators, the form \(\phi\) is an eigenfunction for \(\sigma\). Thus, \(\sigma\phi=\pm\phi\), and \(\phi\) is called even if the sign is positive.
Write the Fourier expansion of the form \(\phi\) at the cusp \(\infty\) as \[ \phi(z)=\sqrt{\cosh(\pi t_\phi)} \sum_{n\neq 0}\rho_\phi(n)\sqrt{y}K_{i{t_\phi}}(2\pi|n|y)e^{2\pi inx}, \] where \(z=x+iy\in\mathbb{H}\), \(\rho_\phi(n)\) are the Fourier coefficients of \(\phi\), and \(K_{it}(y)\) is the modified Bessel function of the second kind. For a fixed \(m\in\mathbb{Z}\), the shifted convolution sum of Fourier coefficients of \(\phi\) is defined as \[ \frac{1}{t_\phi}\sum_{n}\rho_\phi(n+m)\rho_\phi(n)\psi\left(\frac{\pi |n|}{t_\phi}\right), \] where \(\psi\) is a smooth compactly supported test function on \((0,\infty)\).
The main result of the paper estimates the variance of shifted convolution sums of Fourier coefficients of \(\phi\) over the range \(| t_{\phi} -T | < G\), where \(G\) is assumed to be a small power of \(T\). More precisely, let \(1/3<\theta <1\) and \(\epsilon >0\) be fixed. Assume a test function \(\psi\) is supported in the interval \((1/l,l)\) for some fixed \(l>1\). Let \(X\) be a parameter satisfying \(1\ll X\ll T\). Then, there is a constant \(A>0\), depending only on \(\theta\) and \(\epsilon\), such that \[ \begin{aligned} \sum_{|t_\phi -T| < T^\theta} \left| \sum_n \rho_\phi(n+m)\rho_\phi(n)\psi\left(\frac{\pi n}{X}\right) -\delta_{0,m}\frac{12X}{\pi^3}\int_0^\infty \psi(y)dy \right|^2\\ \ll_{\epsilon,\theta,l} \left( |m|^{3/2}+1 \right) XT^{1+\theta+\epsilon}\|\psi \|_{W^{A,\infty}}^2 \end{aligned} \] holds uniformly in \(|m| < X^{1/2}\) as \(T\) tends to \(\infty\), where \(\delta_{0,m}\) is the Kronecker symbol, i.e. \(\delta_{0,m}\) is one if \(m=0\) and zero otherwise, and \(\|\cdot\|_{W^{A,\infty}}\) is a Sobolev space norm defined as \[ \|\psi \|_{W^{A,\infty}}=\sum_{j=0}^A\sup_{x\in (0,\infty)}\left|\partial_x^j\psi(x)\right|. \] Such estimate for holomorphic Hecke eigenforms is obtained by W. Luo and P. Sarnak [Commun. Pure Appl. Math. 56, No. 7, 874–891 (2003; Zbl 1044.11022)].
The proof of the main result is based on writing the variance of shifted convolution sums over \(|t_\phi -T| < T^\theta\) as an exponential sum involving Kloosterman sums using N. V. Kuznetsov trace formula [Mat. Sb., N. Ser. 111(153), 334–383 (1980; Zbl 0427.10016)] for a convenient test function. Then, the rest of the proof is highly involved by technical estimation of the diagonal and off-diagonal terms in the formula.
The main result has several important implications. Recall that the arithmetic Quantum Unique Ergodicity (QUE) theorem of E. Lindenstrauss [Ann. Math. (2) 163, No. 1, 165–219 (2006; Zbl 1104.22015)] and K. Soundararajan [Ann. Math. (2) 172, No. 2, 1529–1538 (2010; Zbl 1209.58019)] deals with the weak limit of the measure \(d\mu_\phi=|\phi(z)|^2dV\) as \(t_\phi\) tends to \(\infty\), where \(dV\) is the measure on \(\mathbb{X}\) induced from the hyperbolic measure \(y^{-2}dxdy\) on \(\mathbb{H}\). The Quantitative Quantum Ergodicity refers to the rate of convergence in QUE. This is all closely related to the limits of shifted convolution sums of Fourier coefficients as \(t_\phi\to\infty\). The first consequence of the main result in this paper is Quantitative Quantum Ergodicity in a short range \(|t_\phi -T| < T^{1/3}\). Let \(\epsilon >0\) be fixed, and let \(h\) be a smooth compactly supported test function with the support in \((1/L,L)\) for some \(L>1\). Then, there is a sufficiently small \(\kappa >0\) and a sufficiently large \(A>0\), both depending only on \(\epsilon\), such that \[ \sum_{|t_\phi-T| < T^{1/3}} \left| \int_\mathbb{X} P_{m,h}(z)|\phi(z)|^2dV - \frac{3}{\pi}\int_\mathbb{X} P_{m,h}(z)dV \right|^2 \ll_{\epsilon,L} T^{1/3+\epsilon}||h||_{W^{A,\infty}} \] holds uniformly in \(h\) and \(|m| < T^\kappa\), where \(P_{m,h}\) is the Poincaré series attached to the integer \(m\) and the test function \(h\).
The second consequence of the main result is concerned with \(L^2\)-norm of \(\phi\) restricted to compact geodesic segment on the imaginary axis \(\{iy\,:\,y>0\}\). Let \(\beta\) be a fixed compact geodesic segment of \(\{iy\,:\,y>0\}\). As an application of QUE, A. Ghosh et al. [Geom. Funct. Anal. 23, No. 5, 1515–1568 (2013; Zbl 1328.11044)] obtained a lower bound for the \(L^2\)-norm restriction \[ \int_\beta |\phi(z)|^2 ds \gg_\beta 1, \] where \(\phi\) is an even Hecke-Maaß cusp form, and \(\beta\) is sufficiently large. Quantitative Quantum Ergodicity result of this paper implies a sharp lower bound for any fixed geodesic \(\beta\) and almost all even Hecke-Maaß cusp forms. More precisely, let \(\epsilon >0\) be fixed. Then, for any fixed compact geodesic segment \(\beta\subset\{iy\,:\,y>0\}\), \[ \int_\beta |\phi(z)|^2 ds \gg_{\beta,\epsilon} 1 \] holds for all but \(O_{\beta,\epsilon}\left(T^{1/3+\epsilon}\right)\) forms in the set of even Hecke-Maaß cusp forms with \(|t_\phi-T| < T^{1/3}\), as \(T\) tends to \(\infty\).
The third consequence of the main result is an upper bound for the \(L^\infty\)-norm of Hecke-Maaß cusp forms. Using the Selberg trace formula and amplification method, H. Iwaniec and P. Sarnak [Ann. Math. (2) 141, No. 2, 301–320 (1995; Zbl 0833.11019)] obtained for any compact subset \(C\) of \(\mathbb{X}\) an upper bound \[ \sup_{z\in C} |\phi(z)|\ll_{C,\epsilon} t_\phi^{\frac{5}{12}+\epsilon}, \] where \(\phi\) is a Hecke-Maaß cusp form. The main result of this paper enables the author to find better amplifiers and thus improve the upper bound for almost all Hecke-Maaß cusp forms. Let \(C\) be a fixed compact subset of \(\mathbb{X}\), and let \(\epsilon >0\) be fixed. Then, all but \(O_\epsilon\left(T^{\frac{13}{12}+\epsilon}\right)\) Hecke-Maaß cusp forms \(\phi\) with \(|t_\phi-T| < T^{1/3}\) satisfy the upper bound \[ \sup_{z\in C}|\phi(z)|\ll_{C,\epsilon} t^{\frac{3}{8}+\epsilon} \] as \(T\) tends to \(\infty\).
Finally, the fourth consequence of the main result is concerned with the number of nodal domains intersecting a segment of the imaginary axis \(\{iy\,:\,y>0\}\). For a Hecke-Maaß cusp form \(\phi\), let \(Z_\phi\) denote its zero set. It is a finite union of real analytic curves. A nodal domain of \(\phi\) is, by definition, any connected component in \(\mathbb{X}\setminus Z_\phi\). Given any subset \(C\) of \(\mathbb{X}\), the number of nodal domains of \(\phi\) intersecting \(C\) is denoted by \(N^C(\phi)\). Assuming the Lindelöf Hypothesis for the \(L\)-function \(L(s,\phi)\), A. Ghosh et al. [Geom. Funct. Anal. 23, No. 5, 1515-1568 (2013; Zbl 1328.11044)] obtained a lower bound for the growth rate of \(N^\beta(\phi)\), where \(\beta\) is a fixed compact geodesic segment in \(\{iy\,:\,y>0\}\) which is sufficiently long. The bound is given by \[ N^{\beta}(\phi)\gg_{\beta,\epsilon} t_\phi^{\frac{1}{12}-\epsilon} \] as \(t_\phi\) tends to \(\infty\). Recently, S. U. Jang and the author [J. Am. Math. Soc. 31, No. 2, 303–318 (2018; Zbl 1385.58014)] showed that \(N^\beta(\phi)\) tends to \(\infty\) without any assumption. Here, the quantitative lower bound is obtained for almost all even Hecke-Maaß cusp forms. More precisely, let \(\beta\) be a fixed compact geodesic segment in \(\{iy\,:\,y>0\}\), and \(\epsilon >0\) fixed. Then, all but \(O\left(T^{\frac{4}{3}-\frac{\epsilon}{2}}\right)\) forms in the set of even Hecke-Maaß cusp forms with \(|t_\phi-T|<T^{1/3}\) satisfy \[ N^{\beta}(\phi)\gg_{\beta,\epsilon} t_\phi^{\frac{1}{8}-\epsilon} \] as \(T\) tends to \(\infty\).

MSC:

58J51 Relations between spectral theory and ergodic theory, e.g., quantum unique ergodicity
11F72 Spectral theory; trace formulas (e.g., that of Selberg)
37A45 Relations of ergodic theory with number theory and harmonic analysis (MSC2010)

References:

[1] Bogomolny E., Schmit C.: Percolation model for nodal domains of chaotic wave functions. Phys. Rev. Lett. 88, 114102 (2002) · doi:10.1103/PhysRevLett.88.114102
[2] Bump D.: Automorphic forms and representations, vol. 55 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1997) · Zbl 0868.11022 · doi:10.1017/CBO9780511609572
[3] Burq N.: Quantum ergodicity of boundary values of eigenfunctions: a control theory approach. Can. Math. Bull. 48(1), 3-15 (2005) · Zbl 1069.58016 · doi:10.4153/CMB-2005-001-3
[4] Christianson H., Toth J.A., Zelditch S.: Quantum ergodic restriction for Cauchy data: interior que and restricted que. Math. Res. Lett. 20(3), 465-475 (2013) · Zbl 1288.58017 · doi:10.4310/MRL.2013.v20.n3.a5
[5] Dunster T.M.: Conical functions with one or both parameters large. Proc. R. Soc. Edinburgh Sect. A. 119(3-4), 311-327 (1991) · Zbl 0736.33002 · doi:10.1017/S0308210500014864
[6] Dyatlov S., Zworski M.: Quantum ergodicity for restrictions to hypersurfaces. Nonlinearity 26(1), 35-52 (2013) · Zbl 1278.81100 · doi:10.1088/0951-7715/26/1/35
[7] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of integral transforms. vol. I. McGraw-Hill Book Company, Inc., New York, Toronto, London [Based, in part, on notes left by Harry Bateman (1954)] · Zbl 0055.36401
[8] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher transcendental functions. vol. II. In: Robert, E. (ed.). Krieger Publishing Co., Inc., Melbourne (1981) (Based on notes left by Harry Bateman, Reprint of the 1953 original) · Zbl 0064.06302
[9] Gradshteyn, I.S., Ryzhik, I.M.: Table of integrals, series, and products. eighth edition. Translated from the Russian, Translation edited and with a preface by Daniel Zwillinger and Victor Moll, Revised from the seventh edition [MR2360010], 8th edn. Elsevier/Academic Press, Amsterdam (2015) · Zbl 1300.65001
[10] Ghosh A., Reznikov A., Sarnak P.: Nodal domains of Maass forms I. Geom. Funct. Anal. 23(5), 1515-1568 (2013) · Zbl 1328.11044 · doi:10.1007/s00039-013-0237-4
[11] Hoffstein, J., Lockhart, P.: Coefficients of Maass forms and the Siegel zero. Ann. Math. 140(1), 161-181 (1994) (With an appendix by Dorian Goldfeld, Hoffstein and Daniel Lieman) · Zbl 0814.11032
[12] Hezari H., Rivière G.: Lp norms, nodal sets, and quantum ergodicity. Adv. Math. 290, 938-966 (2016) · Zbl 1332.81067 · doi:10.1016/j.aim.2015.10.027
[13] Hassell A., Zelditch S.: Quantum ergodicity of boundary values of eigenfunctions. Commun. Math. Phys. 248(1), 119-168 (2004) · Zbl 1054.58022 · doi:10.1007/s00220-004-1070-2
[14] Iwaniec H., Kowalski E.: Analytic number theory, vol. 53 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence (2004) · Zbl 1059.11001
[15] Iwaniec H., Sarnak \[P.: {L^\infty}\] L∞ norms of eigenfunctions of arithmetic surfaces. Ann. Math. 141(2), 301-320 (1995) · Zbl 0833.11019 · doi:10.2307/2118522
[16] Iwaniec H.: Small eigenvalues of Laplacian for \[{\Gamma_0(N)}\] Γ0(N). Acta Arith. 56(1), 65-82 (1990) · Zbl 0702.11034
[17] Jakobson D.: Equidistribution of cusp forms on \[{{{\rm PSL}}_2({\mathbf{Z}})\backslash{{\rm PSL}}_2({\mathbf{R}})}\] PSL2(Z)\PSL2(R). Ann. Inst. Fourier (Grenoble) 47(3), 967-984 (1997) · Zbl 0868.43011 · doi:10.5802/aif.1588
[18] Jang, S., Jung, J.: Quantum unique ergodicity and the number of nodal domains of eigenfunctions (2015). arXiv:1505.02548 [math.SP] · Zbl 1385.58014
[19] Jacquet, H., Langlands, R.P.: Automorphic forms on GL(2). Lecture Notes in Mathematics, vol. 114. Springer, Berlin, New York (1970) · Zbl 0236.12010
[20] Jutila M.: The spectral mean square of Hecke L-functions on the critical line. Publ. Inst. Math. (Beograd) (N.S.) 76(90), 41-55 (2004) · Zbl 1098.11033 · doi:10.2298/PIM0476041J
[21] Jung J., Zelditch S.: Number of nodal domains and singular points of eigenfunctions of negatively curved surfaces with an isometric involution. J. Differ. Geom. 102(1), 37-66 (2016) · Zbl 1335.53048
[22] Kuznecov N.V.: The Petersson conjecture for cusp forms of weight zero and the Linnik conjecture. Sums of Kloosterman sums. Mat. Sb. (N.S.) 111((153)(3)), 334-383, 479 (1980) · Zbl 0427.10016
[23] Lewy H.: On the minimum number of domains in which the nodal lines of spherical harmonics divide the sphere. Comm. Partial Differ. Equations 2(12), 1233-1244 (1977) · Zbl 0377.31008 · doi:10.1080/03605307708820059
[24] Lindenstrauss E.: Invariant measures and arithmetic quantum unique ergodicity. Ann. Math. 163(1), 165-219 (2006) · Zbl 1104.22015 · doi:10.4007/annals.2006.163.165
[25] Luo, W.Z., Sarnak, P.: Quantum ergodicity of eigenfunctions on. Inst. Hautes Études Sci. Publ. Math. (81), 207-237 (1995) · Zbl 0852.11024
[26] Luo, W., Sarnak, P.: Mass equidistribution for Hecke eigenforms. Comm. Pure Appl. Math. 56(7), 874-891 (2003) (Dedicated to the memory of Jürgen K. Moser) · Zbl 1044.11022
[27] Luo W., Sarnak P.: Quantum variance for Hecke eigenforms. Ann. Sci. École Norm. Sup. 37(5), 769-799 (2004) · Zbl 1121.11042
[28] Nazarov F., Sodin M.: On the number of nodal domains of random spherical harmonics. Am. J. Math. 131(5), 1337-1357 (2009) · Zbl 1186.60022 · doi:10.1353/ajm.0.0070
[29] Schubert R.: Upper bounds on the rate of quantum ergodicity. Ann. Henri Poincaré 7(6), 1085-1098 (2006) · Zbl 1099.81032 · doi:10.1007/s00023-006-0277-5
[30] Shimura G.: On the holomorphy of certain Dirichlet series. Proc. Lond. Math. Soc. 31(1), 79-98 (1975) · Zbl 0311.10029 · doi:10.1112/plms/s3-31.1.79
[31] Soundararajan K.: Quantum unique ergodicity for \[{{{\rm SL}}_2({\mathbb{Z}}) \backslash{\mathbb{H}}}\] SL2(Z)\H. Ann. Math. 172(2), 1529-1538 (2010) · Zbl 1209.58019
[32] Stern, A.: Bemerkungen über asymptotisches Verhalten von Eigenwerten und Eigenfunktionen. Math.-naturwiss. Diss. Göttingen 30, S (1925) · JFM 51.0356.01
[33] Titchmarsh E.C.: On Epstein’s Zeta-Function. Proc. Lond. Math. Soc. S2-36(1), 485-500 (1934) · Zbl 0008.30101 · doi:10.1112/plms/s2-36.1.485
[34] Toth J.A., Zelditch S.: Quantum ergodic restriction theorems: manifolds without boundary. Geom. Funct. Anal. 23(2), 715-775 (2013) · Zbl 1277.53088 · doi:10.1007/s00039-013-0220-0
[35] Watson, T.C.: Rankin triple products and quantum chaos. ProQuest LLC, Ann Arbor, MI, 2002. Thesis (Ph.D.), Princeton University · Zbl 0788.58043
[36] Weil A.: On some exponential sums. Proc. Nat. Acad. Sci. USA 34, 204-207 (1948) · Zbl 0032.26102 · doi:10.1073/pnas.34.5.204
[37] Weyl H.: Uber die asymptotische Verteilung der Eigenwerte. Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. 1911, 110-117 (1911) · JFM 42.0432.03
[38] Zelditch S.: Mean Lindelöf hypothesis and equidistribution of cusp forms and Eisenstein series. J. Funct. Anal. 97(1), 1-49 (1991) · Zbl 0743.58034 · doi:10.1016/0022-1236(91)90014-V
[39] Zelditch S.: On the rate of quantum ergodicity. I. Upper bounds. Comm. Math. Phys. 160(1), 81-92 (1994) · Zbl 0788.58043 · doi:10.1007/BF02099790
[40] Zelditch, S.: Logarithmic lower bound on the number of nodal domains. J. Spectr. Theory, issue in honor of Yuri Safarov (2016) (to appear) · Zbl 1380.58024
[41] Zhao P.: Quantum variance of Maass-Hecke cusp forms. Comm. Math. Phys. 297(2), 475-514 (2010) · Zbl 1198.81138 · doi:10.1007/s00220-009-0943-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.