Skip to main content
Log in

Quantum Ergodicity of Boundary Values of Eigenfunctions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Suppose that Ω⊂ℝn is a bounded, piecewise smooth domain. We prove that the boundary values (Cauchy data) of eigenfunctions of the Laplacian on Ω with various boundary conditions are quantum ergodic if the classical billiard map β on the ball bundle B *(∂Ω) is ergodic. Our proof is based on the classical observation that the boundary values of an interior eigenfunction φλ, Δφλ2φλ is an eigenfunction of an operator F h on the boundary of Ω with h−1. In the case of the Neumann boundary condition, F h is the boundary integral operator induced by the double layer potential. We show that F h is a semiclassical Fourier integral operator quantizing the billiard map plus a ‘small’ remainder; the quantum dynamics defined by F h can be exploited on the boundary much as the quantum dynamics generated by the wave group were exploited in the interior of domains with corners and ergodic billiards in the work of Zelditch-Zworski (1996). Novelties include the facts that F h is not unitary and (consequently) the boundary values are equidistributed by measures which are not invariant under β and which depend on the boundary conditions. Ergodicity of boundary values of eigenfunctions on domains with ergodic billiards was conjectured by S. Ozawa (1993), and was almost simultaneously proved by Gerard-Leichtnam (1993) in the case of convex C 1,1 domains (with continuous tangent planes) and with Dirichlet boundary conditions. Our methods seem to be quite different. Motivation to study piecewise smooth domains comes from the fact that almost all known ergodic domains are of this form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bunimovich, L.A., Rehacek, J.: On the ergodicity of many-dimensional focusing billiards. Classical and quantum chaos. Ann. Inst. H. Poincaré Phys. Théor. 68(4), 421–448 (1998)

    MATH  Google Scholar 

  2. Bunimovich, L.A., Rehacek, J.: How high-dimensional stadia look like. Commun. Math. Phys. 197(2), 277–301 (1998)

    Article  MATH  Google Scholar 

  3. Bunimovich, L.A.: Private communication

  4. Bunimovich, L.A.: Conditions of stochasticity of two-dimensional billiards. Chaos 1(2), 187–193 (1991)

    Article  MATH  Google Scholar 

  5. Bunimovich, L.A.: On the ergodic properties of nowhere dispersing billiards. Commun. Math. Phys. 65(3), 295–312 (1979)

    MATH  Google Scholar 

  6. Burq, N.: Quantum ergodicity of boundary values of eigenfunctions: A control theory approach. arXiv:math.AP/0301349, 2003

  7. Colin de Verdière, Y.: Ergodicité et fonctions propres du laplacien. Commun. Math. Phys. 102, 497–502 (1985)

    MATH  Google Scholar 

  8. Cornfeld, I.P., Fomin, S.V., Sinai, Ya.G.: Ergodic theory. Grundelehren Math. Wiss. 245, Berlin: Springer, 1982

  9. Davies, E.B.: Heat kernels and spectral theory. Cambridge Tracts in Mathematics 92, Cambridge: Cambridge University Press, 1989

  10. Dimassi, M., Sjöstrand, J.: Spectral Asymptotics in the Semi-classical Limit. London Mathematical Society Lecture Note Series 268, Cambridge: Cambridge University Press, 1999

  11. Gerard, P., Leichtnam, E.: Ergodic properties of eigenfunctions for the Dirichlet problem. Duke Math. J. 71, 559–607 (1993)

    MathSciNet  MATH  Google Scholar 

  12. Hassell, A., Tao, T.: Upper and lower bounds for normal derivatives of Dirichlet eigenfunctions. Math. Res. Lett. 9, 289–307 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Helffer, B., Sjöstrand, J.: Équation de Schrödinger avec champ magnétique et équation de Harper. Lecture Notes in Physics 345, Berlin-Heidelberg-New York: Springer, 1989, pp. 118–197

  14. Hörmander, L.: The analysis of linear partial differential operators, Vol. 1, second edition, Berlin: Springer-Verlag, 1990

  15. Hörmander, L.: The analysis of linear partial differential operators, Vol. 4, Berlin: Springer-Verlag, 1985

  16. Kerckhoff, S., Masur, H., Smillie, J.: Ergodicity of billiard flows and quadratic differentials. Ann. of Math. (2) 124(2), 293–311 (1986)

    Google Scholar 

  17. Li, C., McIntosh, A., Semmes, S.: Convolution integrals on Lipschitz surfaces. J. Am. Math. Soc. 5, 455–481 (1992)

    MathSciNet  Google Scholar 

  18. Ozawa, S.: Asymptotic property of eigenfunction of the Laplacian at the boundary. Osaka J. Math. 30, 303–314 (1993)

    MathSciNet  MATH  Google Scholar 

  19. Ozawa, S.: Hadamard’s variation of the Green kernels of heat equations and their traces. I. J. Math. Soc. Japan 34(3), 455–473 (1982)

    MATH  Google Scholar 

  20. Ozawa, S.: Peturbation of domains and Green kernels of heat equations. Proc. Japan. Acad. Soc. Japan 54, 322–325 (1978)

    MATH  Google Scholar 

  21. Ozawa, S.: The eigenvalues of the Laplacian and perturbation of boundary conditions, Proc. Japan. Acad. Soc. Japan 55, 121–3 (1979)

    MATH  Google Scholar 

  22. Paul, T., Uribe, A.: The semi-classical trace formula and propagation of wave packets. J. Funct. Anal. 132, 192–249 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Petersen, K.: Ergodic Theory, Cambridge studies in advanced mathematics 2, Cambridge: Cambridge University Press, 1983

  24. Schnirelman, A.I.: Ergodic properties of eigenfunctions. Usp. Math. Nauk. 29, 181–2 (1974)

    Google Scholar 

  25. Seeley, R.: The resolvent of an elliptic boundary problem. Am. J. Math. 91, 889–920 (1969)

    MATH  Google Scholar 

  26. Seeley, R.: Analytic extension of the trace associated with elliptic boundary problems. Am. J. Math. 91, 963–983 (1969)

    MATH  Google Scholar 

  27. Taylor, M.E.: Pseudodifferential Operators. Princeton, NJ: Princeton Mathematical Series, 1981

  28. Taylor, M.E.: Partial differential equations I –- Basic theory. Texts in Applied Mathematics 23, New York: Springer-Verlag, 1996

  29. Taylor, M.E.: Partial differential equations. II. Applied Mathematical Sciences 116, New York: Springer-Verlag, 1996

  30. Verchota, G.: Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59, 572–611 (1984)

    MathSciNet  MATH  Google Scholar 

  31. Wojtkowski, M.: Principles for the design of billiards with nonvanishing Lyapunov exponents. Commun. Math. Phys. 105(3), 391–414 (1986)

    MATH  Google Scholar 

  32. Zelditch, S.: Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J. 55, 919–941 (1987)

    MathSciNet  MATH  Google Scholar 

  33. Zelditch, S.: Quantum ergodicity of C * dynamical systems. Commun. Math. Phys. 177, 507–528 (1996)

    MathSciNet  MATH  Google Scholar 

  34. Zelditch, S.: The inverse spectral problem for analytic plane domains, I: Balian-Bloch trace formula. arXiv: math.SP/0111077 to appear, Commun. Math. Phys.

  35. Zelditch, S., Zworski, M.: Ergodicity of eigenfunctions for ergodic billiards. Commun. Math. Phys. 175, 673–682 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Hassell.

Additional information

Communicated by P. Sarnak

The first author was partially supported by an Australian Research Council Fellowship.

The second author was partially supported by NSF grant #DMS-0071358 and DMS-0302518.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassell, A., Zelditch, S. Quantum Ergodicity of Boundary Values of Eigenfunctions. Commun. Math. Phys. 248, 119–168 (2004). https://doi.org/10.1007/s00220-004-1070-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1070-2

Keywords

Navigation