×

Inverse problem for a space-time fractional diffusion equation: application of fractional Sturm-Liouville operator. (English) Zbl 1388.35205

Summary: An inverse problem of determining a time-dependent source term from the total energy measurement of the system (the over-specified condition) for a space-time fractional diffusion equation is considered. The space-time fractional diffusion equation is obtained from classical diffusion equation by replacing time derivative with fractional-order time derivative and Sturm-Liouville operator by fractional-order Sturm-Liouville operator. The existence and uniqueness results are proved by using eigenfunction expansion method. Several special cases are discussed, and particular examples are provided.

MSC:

35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] IonescuC, LopesA, CopotD, MachadoJAT, BatesJHT. The role of fractional calculus in modelling biological phenomena: a review. Commun Nonlinear Sci Numer Simul. 2017;51:141‐159. · Zbl 1467.92050
[2] HilferR. Applications of Fractional Calculus in Physics. Singapore: World Scientific; 2000. · Zbl 0998.26002
[3] TarasovVE. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Beijing: Springer‐Verlag; 2010. · Zbl 1214.81004
[4] MachadoJAT, LopesAM. Relative fractional dynamics of stock markets. Nonlinear Dyn. 2016;86:1613‐1619.
[5] BaleanuD, GuvencZB, MachadoJAT. New Trends in Nanotechnology and Fractional Calculus Applications. Netherlands: Springer; 2009.
[6] BagleyRL, TorvikPJ. A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol. 1983;27:201‐210. · Zbl 0515.76012
[7] MainardiF. Fractional Calculus and Waves in Linear Viscoelaticity. London: Imperial College Press; 2010.
[8] CaputoM, CarcioneJM, BotelhoMAB. Modeling extreme‐event precursors with the fractional diffusion equation. Fract Calc Appl Anal. 2015;18:208‐222. · Zbl 1515.35308
[9] SokolovIM, KlafterJ. From diffusion to anomalous diffusion: a century after Einstein’s Brownian motion. Chaos. 2005;15:1‐7. · Zbl 1080.82022
[10] HatanoY, HatanoN. Dispersive transport of ions in column experiments: an explanation of long tailed profiles. Water Resour Res. 1998;34:1027‐1033.
[11] FedotovS, KorabelN. Subdiffusion in an external potential: anomalous effects hiding behind normal behavior. Phys Rev E. 2015;91:042112‐1-042112‐7.
[12] MeerschaertMM, SikorskiiA. Stochastic Models for Fractional Calculus. De Gruyter Berlin; 2010.
[13] KlagesR, RadonsG, SokolovIM. Anomalous Transport. WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim; 2008.
[14] SierociukD, SkovranekT, MaciasM, et al. Diffusion process modeling by using fractional‐order models. Appl Math Comp. 2015;257:2‐11.
[15] SalariL, RondoniL, GibertiC, KlagesR. A simple non‐chaotic map generating subdiffusive, diffusive and superdiffusive dynamics. Chaos. 2015;25:1‐11. · Zbl 1374.37063
[16] BirdRB, KlingenbergDJ. Multicompenent diffusion‐ A brief review. Adv Water Res. 2013;62:238‐242.
[17] WeissGH. Aspects and Applications of the Random Walk. Amsterdam: North‐Holland; 1994. · Zbl 0925.60079
[18] HughesDB. Random Walks and Random Environments, Volume I: Random Walks. New York: Oxford University Press; 1995. · Zbl 0820.60053
[19] MuraA, PagniniG. Characterization and simulations of a class of stochastic processes to model anomalous diffusion. J Phys A: Math Theor. 2008;41:1‐22. · Zbl 1143.82028
[20] MetzlerR, JeonJH, CherstvyAG, BarkaiE. Anomalous diffusion models and their properties: non‐stationarity, non‐ergodicity, and ageing at the centenary of single particle tracking. Phys Chem Chem Phys. 2014;16:24128‐24164.
[21] PovstenkoY. Linear Fractional Diffusion‐Wave Equation for Scientists and Engineers. Springer Switzeland; 2015. · Zbl 1331.35004
[22] ChechkinAV, GorenfloR, SokolovIM. Fractional diffusion in inhomogenous media. J Phys A: Math Gen. 2005;38:670‐684. · Zbl 1082.76097
[23] RomanHE, AlemanyPA. Continuous‐time random walks and the fractional diffusion equation. J Phys A: Math Gen. 1994;27:3407‐3410. · Zbl 0827.60057
[24] HilferR, AntonL. Fractional master equations and fractal time random walks. Phys Rev E. 1995;51:R848‐R851.
[25] SchneiderWR, WyssW. Fractional diffusion in one dimension. J Math Phys. 1989;30:134‐144. · Zbl 0692.45004
[26] ChenC, RaghavanR. Transient flow in a linear reservior for space‐time fractional diffusion. J Pet Sci Eng. 2015;128:194‐202.
[27] LaskinN. Some applications of the fractional Poisson probability distribution. J Math Phys. 2009;50:1‐12. · Zbl 1304.81100
[28] LaskinN. Time fractional quantum mechanics. Chaos, Solitons Fractals. 2017;102:16‐28. · Zbl 1374.81059
[29] SandevT, SchulzA, KantzH, IominA. Heterogeneous diffusion in comb and fractal grid structure. Chaos, Solitons Fractals. 2017. https://doi.org/10.1016/j.chaos.2017.04.041. · Zbl 1415.82011 · doi:10.1016/j.chaos.2017.04.041
[30] KlimekM, MalinowskaAB, OdzijewiczT. Variational methods for the fractional Sturm‐Liouville problem. J Math Anal Appl. 2014;416:402‐428. · Zbl 1297.65087
[31] KlimekM, MalinowskaAB, OdzijewiczT. Applications of the fractional Sturm‐Liouville Problem to the space‐time fractional diffusion in a finite domain. Fract Calc Appl Anal. 2016;19:516‐550. · Zbl 1381.34017
[32] IsmailovMI, ÇiçekM. Inverse source problem for a time‐fractional diffusion equation with nonlocal boundary conditions. Applied Mathematical Modelling. 2016;40:4891‐4899. · Zbl 1459.35395
[33] FuratiKM, IyiolaOS, KiraneM. An inverse problem for a generalized fractional diffusion. Appl Math Comp. 2014;249:24‐31. · Zbl 1338.35493
[34] TatarS, UlusoyS. An inverse source problem for a one dimensional space‐time fractional diffusion equation. Appl Anal. 2015;94:2233‐2244. · Zbl 1327.35416
[35] WeiT, SunL, LiY. Uniqueness for an inverse space‐dependent source term in a multi‐dimensional time‐fractional diffusion equation. Appl Math Lett. 2016;61:108‐113. · Zbl 1386.35481
[36] LiuCS, ChenW, FuZ. A multiple‐scale MQ‐RBF for solving the inverse Cauchy problems in arbitrary plane domain. Eng Anal Boundary Elem. 2016;68:11‐16. · Zbl 1403.65116
[37] KiraneM, MalikSA. Determination of an unknown source term and the temperature distribution for the linear heat equation involving fractional derivative in time. Appl Math Comp. 2011;218:163‐170. · Zbl 1231.35289
[38] KiraneM, MalikSA, Al‐GwaizMA. An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal boundary conditions. Math Meth Appl Sci. 2013;36:1056‐1069. · Zbl 1267.80013
[39] FuratiKM, IyiolaOS, MustaphaK. An inverse source problem for a two‐parameter anomalous diffusion with local time datum. Comput Math Appl. 2017;73:1008‐1015. · Zbl 1409.35214
[40] Al‐JamalMF. A backward problem for the time‐fractional diffusion equation. Math Meth Appl Sci. 2017;40:2466‐2474. · Zbl 1366.65086
[41] AliM, MalikSA. An inverse problem for a family of time fractional diffusion equations. Inverse Prob Sci Eng. 2017;25:1299‐1322. · Zbl 1398.65232
[42] AzizS, MalikSA. Identification of an unknown source term for a time fractional fourth‐order parabolic equation. Electron J Differ Equ. 2016;293:1‐20. · Zbl 1358.80004
[43] LukashchukSY. Estimation of parameters in fractional subdiffusion equations by the time integral characteristics method. Comput Math Appl. 2011;62:834‐844. · Zbl 1228.35265
[44] JannoJ. Determination of the order of fractional derivative and a kernel in an inverse problem for a generalized time fractional diffusion equation. Electron J Differ Equ. 2016;199:1‐28. · Zbl 1342.35452
[45] ChenS, JiangXY. Parameter estimation for a new anomalous thermal diffusion model in layered media. Comput Math Appl. 2017;73:1172‐1181. · Zbl 1409.35235
[46] TatarS, TinaztepeR, UlusoyS. Simultaneous inversion for the exponents of the fractional time and space derivatives in the space‐time fractional diffusion equation. Appl Anal. 2016;95:1‐23. · Zbl 1334.35401
[47] MalikSA, AzizS. An inverse source problem for a two parameter anomalous diffusion equation with nonlocal boundary conditions. Comput Math Appl. 2017;73:2548‐2560. · Zbl 1386.35479
[48] JiaJ, PengJ, YangJ. Harnack’s inequality for a space‐time fractional diffusion equation and application to an inverse source problem. J Differ Equ. 2017;262:4415‐4450. · Zbl 1357.35284
[49] SamkoGS, KilbasAA, MarichevDI. Fractional Integrals and Derivatives: Theory and Applications. Amsterdam: Gordon and Breach Science Publishers; 1993. · Zbl 0818.26003
[50] KilbasAA, SrivastavaHM, TrujilloJJ. Theory and Applications of Fractional Differential Equations, Vol. 204. Amsterdam: Elsevier; 2006. · Zbl 1092.45003
[51] GorenfloR, KilbasAA, MainardiF, RogosinSV. Mittag‐Leffler Functions, Related Topics and Application. Berlin, Heidelberg: Springer; 2014. · Zbl 1309.33001
[52] PodlubnyI. Fractional Differential Equations, Vol. 198. San Diego, California: Mathematics in Science and Engineering, Acad. Press; 1999. · Zbl 0924.34008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.