×

Heterogeneous diffusion in comb and fractal grid structures. (English) Zbl 1415.82011

Summary: We give exact analytical results for diffusion with a power-law position dependent diffusion coefficient along the main channel (backbone) on a comb and grid comb structures. For the mean square displacement along the backbone of the comb we obtain behavior \(\langle x^2(t)\rangle\sim t^{1/(2-\alpha)}\), where \(\alpha\) is the power-law exponent of the position dependent diffusion coefficient \(D(x)\sim\vert x\vert^\alpha\). Depending on the value of \(\alpha\) we observe different regimes, from anomalous subdiffusion, superdiffusion, and hyperdiffusion. For the case of the fractal grid we observe the mean square displacement, which depends on the fractal dimension of the structure of the backbones, i.e., \(\langle x^2(t)\rangle\sim t^{(1+\nu)/(2-\alpha)}\), where \(0<\nu<1\) is the fractal dimension of the backbones structure. The reduced probability distribution functions for both cases are obtained by help of the Fox \(H\)-functions.

MSC:

82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
35C05 Solutions to PDEs in closed form

References:

[1] Vedenov, A. A., Theory of a weakly turbulent plasma, Rev Plasma Phys, 3, 229 (1967)
[2] O’Shaughnessy, B.; Procaccia, I., Analytical solutions for diffusion on fractal objects, Phys Rev Lett, 54, 455 (1985)
[3] Grossmann, S.; Procaccia, I., Unified theory of relative turbulent diffusion, Phys Rev A, 29, 1358 (1984)
[4] Hentschel, H. G.E.; Procaccia, I., Relative diffusion in turbulent media: the fractal dimension of clouds, Phys Rev A, 29, 1461 (1984)
[5] Fujisaka H, Grossmann S, Thomae S, Naturforsch Z. Teil A 1985;40:867.; Fujisaka H, Grossmann S, Thomae S, Naturforsch Z. Teil A 1985;40:867.
[6] Baskin, E.; Iomin, A., Superdiffusion on a comb structure, Phys Rev Lett, 93, 120603 (2004)
[7] Iomin, A.; Baskin, E., Negative superdiffusion due to inhomogeneous convection, Phys Rev E, 71, 061101 (2005)
[8] Srokowski, T.; Kamińska, A., Diffusion equations for a markovian jumping process, Phys Rev E, 74, 021103 (2006)
[9] Fa, K. S.; Lenzi, E. K., Power law diffusion coefficient and anomalous diffusion: analysis of solutions and first passage time, Phys Rev E, 67, 061105 (2003)
[10] Multiplicative Lévy processes: Ito versus stratonovich interpretation, Phys Rev E, 80, 051113 (2009)
[11] Cherstvy, A. G.; Chechkin, A. V.; Metzler, R., Anomalous diffusion and ergodicity breaking in heterogeneous diffusion processes, New J Phys, 15, 083039 (2013)
[12] Regev, S.; Grønhech-Jensen, N.; Farago, O., Isothermal Langevin dynamics in system with power-law spatially dependent fraction, Phys. Rev. E, 94, 012116 (2016)
[13] Kazakevičius, R.; Ruseckas, J., Influence of external potentials on heterogeneous diffusion processes, Phys Rev E, 94, 032109 (2016)
[14] de Andrade, M. F.; Lenzi, E. K.; Evangelista, L. R.; Mendes, R. S.; Malacarne, L. C., Anomalous diffusion and fractional diffusion equation: anisotropic media and external forces, Phys Lett A, 347, 160 (2005)
[15] Iomin, A., Exponential spreading and singular behavior of quantum dynamics near hyperbolic points, Phys Rev E, 87, 054901 (2013)
[16] Weiss, G. H.; Havlin, S., Some properties of a random walk on a comb structure, Physica A, 134, 474 (1986)
[17] Arkhincheev, V. E.; Baskin, E. M., Anomalous diffusion and drift in a comb model of percolation clusters, Sov Phys JETP, 73, 161 (1991)
[18] Matan, O.; Havlin, S.; Staufler, D., Scaling properties of diffusion on comb-like structures, J Phys A: Math Gen, 22, 2867 (1989)
[19] Sandev, T.; Iomin, A.; Kantz, H., Fractional diffusion on a fractal grid comb, Phys Rev E, 91, 032108 (2015)
[20] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional integrals and derivatives: theory and applications (1993), Taylor and Francis, London · Zbl 0818.26003
[21] Podlubny, I., Fractional Differential Equations (1999), Academic Press, San Diego etc. · Zbl 0918.34010
[22] Zhou, Y., Basic Theory Of Fractional Differential Equations (2014), World Scientific, Singapore · Zbl 1336.34001
[23] Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. G., Higher Transcedential Functions, 3 (1955), McGraw-Hill, New York · Zbl 0064.06302
[24] Mathai, A. M.; Saxena, R. K.; Haubold, H. J., The \(H\)-function: Theory and Applications (2010), Springer, New York · Zbl 1223.85008
[25] West, B. J.; Bologna, M.; Grigolini, P., Physics of Fractal Operators (2003), Springer, New York
[26] Arkhincheev, V. E.; Kunnen, E.; Baklanov, M. R., Active species in porous media: random walk and capture in traps, Microelectron Eng, 88, 694 (2011)
[27] Maex, K.; Baklanov, M. R.; Shamiryan, D.; Lacopi, F.; Brongersma, S. H.; Yanovitskaya, Z. S., Low dielectric constant materials for microelectronics, J Appl Phys, 93, 8793 (2003)
[28] Tarasov, V. E., Fractional generalization of liouville equations, Chaos, 14, 123 (2004)
[29] Gradshteyn, I. S.; Ryzhik, I. M., Table of Integrals, Series, and Products (2007), Academic Press, San Diego · Zbl 1208.65001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.