×

Modeling phononic crystals via the weighted relaxed micromorphic model with free and gradient micro-inertia. (English) Zbl 1387.74004

Summary: In this paper the relaxed micromorphic continuum model with weighted free and gradient micro-inertia is used to describe the dynamical behavior of a real two-dimensional phononic crystal for a wide range of wavelengths. In particular, a periodic structure with specific micro-structural topology and mechanical properties, capable of opening a phononic band-gap, is chosen with the criterion of showing a low degree of anisotropy (the band-gap is almost independent of the direction of propagation of the traveling wave). A Bloch wave analysis is performed to obtain the dispersion curves and the corresponding vibrational modes of the periodic structure. A linear-elastic, isotropic, relaxed micromorphic model including both a free micro-inertia (related to free vibrations of the microstructures) and a gradient micro-inertia (related to the motions of the microstructure which are coupled to the macro-deformation of the unit cell) is introduced and particularized to the case of plane wave propagation. The parameters of the relaxed model, which are independent of frequency, are then calibrated on the dispersion curves of the phononic crystal showing an excellent agreement in terms of both dispersion curves and vibrational modes. Almost all the homogenized elastic parameters of the relaxed micromorphic model result to be determined. This opens the way to the design of morphologically complex meta-structures which make use of the chosen phononic material as the basic building block and which preserve its ability of “stopping” elastic wave propagation at the scale of the structure.

MSC:

74A10 Stress
74A30 Nonsimple materials
74A60 Micromechanical theories
74E15 Crystalline structure
74M25 Micromechanics of solids
74Q15 Effective constitutive equations in solid mechanics

References:

[1] Armenise, M.N., Campanella, C.E., Ciminelli, C., Dell’Olio, F., Passaro, V.M.N.: Phononic and photonic band gap structures: Modelling and applications. Phys. Proc. 3(1), 357-364 (2010) · doi:10.1016/j.phpro.2010.01.047
[2] Auriault, J.L., Boutin, C.: Long wavelength inner-resonance cut-off frequencies in elastic composite materials. Int. J. Solids Struct. 49(23-24), 3269-3281 (2012) · doi:10.1016/j.ijsolstr.2012.07.002
[3] Barbagallo, G., d’Agostino, M.V., Abreu, R., Ghiba, I.-D., Madeo, A., Neff, P.: Transparent anisotropy for the relaxed micromorphic model: macroscopic consistency conditions and long wave length asymptotics. Preprint arXiv:1601.03667 (2016) · Zbl 1310.74037
[4] Bigoni, D., Guenneau, S., Movchan, A.B., Brun, M.: Elastic metamaterials with inertial locally resonant structures: Application to lensing and localization. Phys. Rev. B 87(17), 174303 (2013) · doi:10.1103/PhysRevB.87.174303
[5] Blanco, A., Chomski, E., Grabtchak, S., Ibisate, M., John, S., Leonard, S.W., Lopez, C., Meseguer, F., Miguez, H., Mondia, J.P., Ozin, G.A., Toader, O., van Driel, H.M.: Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 405(6785), 437-440 (2000) · doi:10.1038/35013024
[6] Boutin, C., Hans, S.: Homogenisation of periodic discrete medium: Application to dynamics of framed structures. Comput. Geotech. 30(4), 303-320 (2003) · doi:10.1016/S0266-352X(03)00005-3
[7] Boutin, C.; Hans, S.; Chesnais, C., Generalized beams and continua. Dynamics of reticulated structures, No. 21, 131-141 (2010), New York · Zbl 1396.74071 · doi:10.1007/978-1-4419-5695-8_14
[8] Boutin, C., Soubestre, J.: Generalized inner bending continua for linear fiber reinforced materials. Int. J. Solids Struct. 48(3-4), 517-534 (2011) · Zbl 1236.74055 · doi:10.1016/j.ijsolstr.2010.10.017
[9] Brun, M., Guenneau, S., Movchan, A.B., Bigoni, D.: Dynamics of structural interfaces: Filtering and focussing effects for elastic waves. J. Mech. Phys. Solids 58(9), 1212-1224 (2010) · Zbl 1429.74017 · doi:10.1016/j.jmps.2010.06.008
[10] Chen, Y., Lee, J.D.: Connecting molecular dynamics to micromorphic theory. (I). Instantaneous and averaged mechanical variables. Physica A 322, 359-376 (2003) · Zbl 1076.74502 · doi:10.1016/S0378-4371(02)01921-0
[11] Chen, Y., Lee, J.D., Eskandarian, A.: Atomistic viewpoint of the applicability of microcontinuum theories. Int. J. Solids Struct. 41(8), 2085-2097 (2004) · Zbl 1081.74004 · doi:10.1016/j.ijsolstr.2003.11.030
[12] Collet, M., Ouisse, M., Ruzzene, M., Ichchou, M.: Floquet-Bloch decomposition for the computation of dispersion of two-dimensional periodic, damped mechanical systems. Int. J. Solids Struct. 48(20), 2837-2848 (2011) · doi:10.1016/j.ijsolstr.2011.06.002
[13] Colombi, A., Colquitt, D.J., Roux, P., Guenneau, S., Craster, R.V.: A seismic metamaterial: The resonant metawedge. Sci. Rep. 6(7249), 27717 (2016) · doi:10.1038/srep27717
[14] Colquitt, D.J., Brun, M., Gei, M., Movchan, A.B., Movchan, N.V., Jones, I.S.: Transformation elastodynamics and cloaking for flexural waves. J. Mech. Phys. Solids 72, 131-143 (2014) · Zbl 1328.74055 · doi:10.1016/j.jmps.2014.07.014
[15] Craster, R.V., Guenneau, S.: Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking. Springer Series in Materials Science. Springer, Berlin (2013), 332 pp · doi:10.1007/978-94-007-4813-2
[16] d’Agostino, M.V., Barbagallo, G., Ghiba, I.-D., Madeo, A., Neff, P.: A panorama of dispersion curves for the isotropic weighted relaxed micromorphic model. Preprint arXiv:1610.03296 (2016)
[17] Eringen, A.C.: Microcontinuum Field Theories. Springer, New York (1999) · Zbl 0953.74002 · doi:10.1007/978-1-4612-0555-5
[18] Fan, Y., Collet, M., Ichchou, M., Li, L., Bareille, O., Dimitrijevic, Z.: A wave-based design of semi-active piezoelectric composites for broadband vibration control. Smart Mater. Struct. 25(5), 055032 (2016) · doi:10.1088/0964-1726/25/5/055032
[19] Fan, Y., Collet, M., Ichchou, M., Li, L., Bareille, O., Dimitrijevic, Z.: Energy flow prediction in built-up structures through a hybrid finite element/wave and finite element approach. Mech. Syst. Signal Process. 66-67, 137-158 (2016) · doi:10.1016/j.ymssp.2015.05.014
[20] Florescu, M., Torquato, S., Steinhardt, P.J.: Complete band gaps in two-dimensional photonic quasicrystals. Phys. Rev. B, Condens. Matter Mater. Phys. 80(15), 1-7 (2009) · doi:10.1103/PhysRevB.80.155112
[21] Florescu, M., Torquato, S., Steinhardt, P.J.: Designer disordered materials with large, complete photonic band gaps. Proc. Natl. Acad. Sci. USA 106(49), 20658-20663 (2009) · doi:10.1073/pnas.0907744106
[22] Ghiba, I.-D., Neff, P., Madeo, A., Placidi, L., Rosi, G.: The relaxed linear micromorphic continuum: existence, uniqueness and continuous dependence in dynamics. Math. Mech. Solids 20(10), 1171-1197 (2014) · Zbl 1338.74007 · doi:10.1177/1081286513516972
[23] Gonella, S., Greene, M.S., Liu, W.K.: Characterization of heterogeneous solids via wave methods in computational microelasticity. J. Mech. Phys. Solids 59(5), 959-974 (2011) · Zbl 1270.74036 · doi:10.1016/j.jmps.2011.03.003
[24] Haberko, J., Scheffold, F.: Fabrication of mesoscale polymeric templates for three-dimensional disordered photonic materials. Opt. Express 21(1), 1057-1065 (2013) · doi:10.1364/OE.21.001057
[25] Huang, J., Shi, Z.: Attenuation zones of periodic pile barriers and its application in vibration reduction for plane waves. J. Sound Vib. 332(19), 4423-4439 (2013) · doi:10.1016/j.jsv.2013.03.028
[26] Jiménez, N., Huang, W., Romero-García, V., Pagneux, V., Groby, J.-P.: Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption. Appl. Phys. Lett. 109(12), 121902 (2016) · doi:10.1063/1.4962328
[27] Lin, S.-Y., Fleming, J.G.: A three-dimensional optical photonic crystal. J. Lightwave Technol. 17(11), 1944-1947 (1999) · doi:10.1109/50.802977
[28] Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289(5485), 1734-1736 (2000) · doi:10.1126/science.289.5485.1734
[29] Madeo, A., Barbagallo, G., d’Agostino, M.V., Placidi, L., Neff, P.: First evidence of non-locality in real band-gap metamaterials: Determining parameters in the relaxed micromorphic model. Proc. R. Soc. A, Math. Phys. Eng. Sci. 472(2190), 20160169 (2016) · Zbl 1371.82126 · doi:10.1098/rspa.2016.0169
[30] Madeo, A., Neff, P., Aifantis, E.C., Barbagallo, G., d’Agostino, M.V.: On the role of micro-inertia in enriched continuum mechanics. Preprint arXiv:1607.07385 (2016) · Zbl 1404.82039
[31] Madeo, A., Neff, P., d’Agostino, M.V., Barbagallo, G.: Complete band gaps including non-local effects occur only in the relaxed micromorphic model. C. R., Méc. 344(11-12), 784-796 (2016) · doi:10.1016/j.crme.2016.07.002
[32] Madeo, A., Neff, P., Ghiba, I.-D., Placidi, L., Rosi, G.: Band gaps in the relaxed linear micromorphic continuum. Z. Angew. Math. Mech. 95(9), 880-887 (2014) · Zbl 1326.74106 · doi:10.1002/zamm.201400036
[33] Madeo, A., Neff, P., Ghiba, I.-D., Placidi, L., Rosi, G.: Wave propagation in relaxed micromorphic continua: Modeling metamaterials with frequency band-gaps. Contin. Mech. Thermodyn. 27(4-5), 551-570 (2015) · Zbl 1341.74085 · doi:10.1007/s00161-013-0329-2
[34] Madeo, A., Neff, P., Ghiba, I.-D., Rosi, G.: Reflection and transmission of elastic waves in non-local band-gap metamaterials: A comprehensive study via the relaxed micromorphic model. J. Mech. Phys. Solids 95, 441-479 (2016) · Zbl 1482.74103 · doi:10.1016/j.jmps.2016.05.003
[35] Maldovan, M.: Sound and heat revolutions in phononics. Nature 503(7475), 209-217 (2013) · doi:10.1038/nature12608
[36] Man, W., Florescu, M., Matsuyama, K., Yadak, P., Nahal, G., Hashemizad, S., Williamson, E., Steinhardt, P., Torquato, S., Chaikin, P.: Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast. Opt. Express 21(17), 19972-19981 (2013) · doi:10.1364/OE.21.019972
[37] Martínez-Sala, R., Sancho, J., Sánchez, J.V., Gómez, V., Llinares, J., Meseguer, F.: Sound attenuation by sculpture. Nature 378(6554), 241 (1995) · doi:10.1038/378241a0
[38] Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51-78 (1964) · Zbl 0119.40302 · doi:10.1007/BF00248490
[39] Miniaci, M., Krushynska, A., Bosia, F., Pugno, N.M.: Large scale mechanical metamaterials as seismic shields. New J. Phys. 18(8), 83041 (2016) · doi:10.1088/1367-2630/18/8/083041
[40] Misseroni, D., Colquitt, D.J., Movchan, A.B., Movchan, N.V., Jones, I.S.: Cymatics for the cloaking of flexural vibrations in a structured plate. Sci. Rep. 6, 23929 (2016) · doi:10.1038/srep23929
[41] Morandi, F., Miniaci, M., Marzani, A., Barbaresi, L., Garai, M.: Standardised acoustic characterisation of sonic crystals noise barriers: Sound insulation and reflection properties. Appl. Acoust. 114, 294-306 (2016) · doi:10.1016/j.apacoust.2016.07.028
[42] Morvan, B., Tinel, A., Hladky Hennion, A.C., Vasseur, J., Dubus, B.: Experimental demonstration of the negative refraction of a transverse elastic wave in a two dimensional solid phononic crystal. Appl. Phys. Lett. 96(10), 2008-2011 (2010) · doi:10.1063/1.3302456
[43] Neff, P.: The Cosserat couple modulus for continuous solids is zero viz the linearized Cauchy-stress tensor is symmetric. Z. Angew. Math. Mech. 86(11), 892-912 (2006) · Zbl 1104.74007 · doi:10.1002/zamm.200510281
[44] Neff, P., Ghiba, I.-D., Lazar, M., Madeo, A.: The relaxed linear micromorphic continuum: well-posedness of the static problem and relations to the gauge theory of dislocations. Q. J. Mech. Appl. Math. 68(1), 53-84 (2015) · Zbl 1310.74037 · doi:10.1093/qjmam/hbu027
[45] Neff, P., Ghiba, I.-D., Madeo, A., Placidi, L., Rosi, G.: A unifying perspective: The relaxed linear micromorphic continuum. Contin. Mech. Thermodyn. 26(5), 639-681 (2014) · Zbl 1341.74135 · doi:10.1007/s00161-013-0322-9
[46] Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966-3969 (2000) · doi:10.1103/PhysRevLett.85.3966
[47] Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312(5781), 1780-1782 (2006) · Zbl 1226.78003 · doi:10.1126/science.1125907
[48] Pham, K., Kouznetsova, V.G., Geers, M.G.D.: Transient computational homogenization for heterogeneous materials under dynamic excitation. J. Mech. Phys. Solids 61(11), 2125-2146 (2013) · Zbl 1325.74125 · doi:10.1016/j.jmps.2013.07.005
[49] Spadoni, A., Ruzzene, M., Gonella, S., Scarpa, F.: Phononic properties of hexagonal chiral lattices. Wave Motion 46(7), 435-450 (2009) · Zbl 1231.82083 · doi:10.1016/j.wavemoti.2009.04.002
[50] Sridhar, A., Kouznetsova, V.G., Geers, M.G.D.: Homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum. Comput. Mech. 57(3), 423-435 (2016) · Zbl 1382.74106 · doi:10.1007/s00466-015-1254-y
[51] Wang, Y.-F., Wang, Y.-S.: Multiple wide complete bandgaps of two-dimensional phononic crystal slabs with cross-like holes. J. Sound Vib. 332(8), 2019-2037 (2013) · doi:10.1016/j.jsv.2012.11.031
[52] Eli, Y.: Photonic band-gap structures. J. Opt. Soc. Am. B 10(2), 283-295 (1993)
[53] Yamamoto, N., Noda, S.: Fabrication and optical properties of one period of a three-dimensional photonic crystal operating in the 5-10 micron wavelength region. Jpn. J. Appl. Phys. 38(2), 1282-1285 (1999) · doi:10.1143/JJAP.38.1282
[54] Yi, K., Collet, M., Ichchou, M., Li, L.: Flexural waves focusing through shunted piezoelectric patches. Smart Mater. Struct. 25(7), 075007 (2016) · doi:10.1088/0964-1726/25/7/075007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.