×

Dynamics of structural interfaces: filtering and focussing effects for elastic waves. (English) Zbl 1429.74017

Summary: Dynamics of thick interfaces separating different regions of elastic materials is investigated. The interfaces are made up of elastic layers or inertial truss structures. The study of evanescent mode propagation and transmission properties reveals that the discrete nature of structural interfaces introduces unusual filtering characteristics in the system, which cannot be obtained with multilayered interfaces. An example of metamaterial is presented, namely, a planar structural interface, which acts as a flat lens, therefore evidencing the negative refraction and focussing of elastic waves.

MSC:

74A50 Structured surfaces and interfaces, coexistent phases
74J99 Waves in solid mechanics
Full Text: DOI

References:

[1] Bertoldi, K.; Bigoni, D.; Drugan, J. W., Structural interfaces in linear elasticity. Part I: nonlocality and gradient approximations, J. Mech. Phys. Solids, 55, 1, 1-34 (2007) · Zbl 1171.74002
[2] Bertoldi, K.; Bigoni, D.; Drugan, J. W., Structural interfaces in linear elasticity. Part II: effective properties and neutrality, J. Mech. Phys. Solids, 55, 1, 35-63 (2007) · Zbl 1171.74003
[3] Bertoldi, K.; Bigoni, D.; Drugan, J. W., A discrete-fibers model for bridged cracks and reinforced elliptical voids, J. Mech. Phys. Solids, 55, 5, 1016-1035 (2007) · Zbl 1170.74047
[4] Bigoni, D.; Gei, M.; Movchan, A. B., Dynamics of a prestressed stiff layer on an elastic half space: filtering and band gap characteristics of periodic structural models derived from longwave asymptotics, J. Mech. Phys. Solids, 56, 7, 2494-2520 (2008) · Zbl 1171.74361
[5] Bigoni, D.; Movchan, A. B., Statics and dynamics of structural interfaces in elasticity, Int. J. Solids Struct., 39, 19, 4843-4865 (2002) · Zbl 1042.74034
[6] Brun, M.; Guenneau, S.; Movchan, A. B., Achieving control of in-plane elastic waves, Appl. Phys. Lett., 94, 6, 061903 (2009)
[7] Ding, Y.; Liu, Z.; Qiu, C.; Shi, J., Metamaterial with simultaneously negative bulk modulus and mass density, Phys. Rev. Lett., 99, 9, 093904 (2007)
[8] Farhat, M.; Guenneau, S.; Enoch, S.; Movchan, A. B., Broadband cylindrical acoustic cloak for linear surface waves in a fluid, Phys. Rev. Lett., 101, 13, 134501 (2008)
[9] Felbacq, D.; Guizal, B.; Zolla, F., Limit analysis of the diffraction of a plane wave by a one-dimensional periodic medium, J. Math. Phys., 39, 9, 4604-4607 (1998) · Zbl 0935.78008
[10] Gei, M.; Movchan, A. B.; Bigoni, D., Band-gap shift and defect-induced annihilation in prestressed elastic structures, J. Appl. Phys., 105, 6, 063507 (2009)
[11] Guenneau, S.; Movchan, A. B.; Petursson, G.; Ramakrishna, S. A., Acoustic metamaterials for sound focussing and confinement, New J. Phys., 9, 399 (2007)
[12] Guenneau, S.; Movchan, A. B.; Movchan, N. V.; Trebicki, J., Acoustic stop bands in almost-periodic and weakly randomized stratified media: perturbation analysis, Acta Mech. Sin., 24, 5, 549-556 (2008) · Zbl 1257.74090
[13] Lekner, J., Light in periodically stratified media, J. Opt. Soc. Am. A, 11, 11, 2892-2899 (1994)
[14] Leonhardt, U.; Philbin, T. G., General relativity in electrical engineering, New J. Phys., 8, 247 (2006)
[15] Martinsson, P. G.; Movchan, A. B., Vibrations of lattice structures and phononic band gaps, Q. J. Mech. Appl. Math., 56, 45-64 (2003) · Zbl 1044.74020
[16] Milton, G. W.; Willis, J. R., On modifications of Newton’s second law and linear continuum elastodynamics, Proc. R. Soc. London A, 463, 2079, 855-880 (2007) · Zbl 1347.74080
[17] Milton, G. W.; Nicorovici, N. A.P., On the cloaking effects associated with anomalous localized resonance, Proc. R. Soc. London A, 462, 2074, 3027-3059 (2006) · Zbl 1149.00310
[18] Milton, G. W.; Nicorovici, N. A.P.; McPhedran, R. C.; Cherednichenko, K.; Jacob, Z., Solutions in folded geometries, and associated cloaking due to anomalous resonance, New J. Phys., 10, 115021 (2008)
[19] Movchan, A. B.; Guenneau, S., Split-ring resonators and localized modes, Phys. Rev. B, 70, 12, 125116 (2004)
[20] Movchan, A. B.; Slepyan, L. I., Band gap Green’s functions and localized oscillations, Proc. R. Soc. London A, 463, 2086, 2709-2727 (2007) · Zbl 1131.74026
[21] Parnell, W. J., Effective wave propagation in a prestressed nonlinear elastic composite bar, IMA J. Appl. Math., 72, 2, 223-244 (2007) · Zbl 1118.74025
[22] Pendry, J. B., Negative refraction makes a perfect lens, Phys. Rev. Lett., 85, 18, 3966-3969 (2000)
[23] Pendry, J. B.; Holden, A. J.; Robbins, D. J.; Stewart, W. J., Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microwave Theory Tech., 47, 11, 2075-2084 (1999)
[24] Pendry, J. B.; Schurig, D.; Smith, D. R., Controlling electromagnetic fields, Science, 312, 1780 (2006) · Zbl 1226.78003
[25] Platts, S. B.; Movchan, N. V., Phononic band gap properties of doubly periodic arrays of coated inclusions, (Bergman, D. J.; Inan, E., Continuum Models and Discrete Systems, NATO Science Series II: Mathematics, Physics and Chemistry, vol. 158 (2004), Kluwer Academic Publishers), 287-294
[26] Robbie, K.; Brett, M. J.; Lakhtakia, A., Chiral sculptured thin films, Nature, 384, 6610, 616 (1996)
[27] Robbie, K.; Broer, D. J.; Brett, M. J., Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure, Nature, 399, 6738, 764-766 (1999)
[28] Smith, D. R.; Kroll, N., Negative refractive index in left-handed materials, Phys. Rev. Lett., 85, 14, 2933-2936 (2000)
[29] Sukhovich, A.; Jing, L.; Page, J. H., Negative refraction and focussing of ultrasound in two-dimensional phononic crystals, Phys. Rev. B, 77, 1, 014301 (2008)
[30] Sumigawa, T.; Hirakata, H.; Takemura, M.; Matsumoto, S.; Suzuki, M.; Kitamura, T., Disappearance of stress singularity at interface edge due to nanostructured thin film, Eng. Fract. Mech., 75, 10, 3073-3083 (2008)
[31] Tang, T.; Hui, C.-Y.; Glassmaker, N. J., Can a fibrillar interface be stronger and tougher than a non-fibrillar one?, J. R. Soc. Interface, 2, 5, 505-516 (2005)
[32] Veselago, V. G., Electrodynamics of substances with simultaneously negative value of \(\varepsilon\) and \(\mu \), Sov. Phys. Uspekhi, 10, 509-514 (1968)
[33] Zhang, S.; Yin, L.; Fang, N., Focussing ultrasound with an acoustic metamaterial network, Phys. Rev. Lett., 102, 19, 194301 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.