×

Loop quantum cosmology-corrected Gauss-Bonnet singular cosmology. (English) Zbl 1386.83132

Summary: In this work we investigate which Loop Quantum Cosmology (LQC)-corrected Gauss-Bonnet \(F(\mathcal{G})\) gravity can realize two singular cosmological scenarios, the intermediate inflation and the singular bounce scenarios. The intermediate inflation scenario has a Type III sudden singularity at \(t = 0\), while the singular bounce has a soft Type IV singularity. By using perturbative techniques, we find the holonomy-corrected \(F(\mathcal{G})\) gravities that generate at leading order the aforementioned cosmologies and we also argue that the effect of the holonomy corrections is minor to the power spectrum of the primordial curvature perturbations of the classical theory.

MSC:

83F05 Relativistic cosmology
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
83C45 Quantization of the gravitational field
81Q70 Differential geometric methods, including holonomy, Berry and Hannay phases, Aharonov-Bohm effect, etc. in quantum theory
83C75 Space-time singularities, cosmic censorship, etc.

References:

[1] Linde, A. D., Inflationary cosmology, Lect. Notes Phys.738 (2008) 1, arXiv: 0705.0164 [hep-th]. · Zbl 1172.83004
[2] Gorbunov, D. S. and Rubakov, V. A., Introduction to the Theory of the Early Universe: Cosmological Perturbations and Inflationary Theory (World Scientific, USA, 2011). · Zbl 1246.83007
[3] A. Linde, Inflationary cosmology after Planck 2013, arXiv:1402.0526 [hep-th]. · Zbl 1326.83008
[4] Lyth, D. H. and Riotto, A., Particle physics models of inflation and the cosmological density perturbation, Phys. Rep.314 (1999) 1, arXiv: hep-ph/9807278.
[5] Nojiri, S., Odintsov, S. D. and Oikonomou, V. K., Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution, Phys. Rep.692 (2017) 1, https://doi.org/10.1016/j.physrep.2017.06.001, arXiv: 1705.11098 [gr-qc]. · Zbl 1370.83084
[6] Nojiri, S. and Odintsov, S. D., Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models, Phys. Rep.505 (2011) 59.
[7] Nojiri, S. and Odintsov, S. D., Introduction to modified gravity and gravitational alternative for dark energy, Int. J. Geom. Meth. Mod. Phys.4 (2007) 115. · Zbl 1112.83047
[8] Capozziello, S. and De Laurentis, M., Extended theories of gravity, Phys. Rep.509 (2011) 167. · Zbl 1260.83030
[9] R. H. Brandenberger, The matter bounce alternative to inflationary cosmology, arXiv:1206.4196 [astro-ph.CO].
[10] R. Brandenberger and P. Peter, Bouncing cosmologies: Progress and problems, arXiv:1603.05834 [hep-th]. · Zbl 1372.83002
[11] Battefeld, D. and Peter, P., A critical review of classical bouncing cosmologies, Phys. Rep.571 (2015) 1, arXiv: 1406.2790 [astro-ph.CO]. · Zbl 1370.83107
[12] Novello, M. and Bergliaffa, S. E. P., Bouncing cosmologies, Phys. Rep.463 (2008) 127, arXiv: 0802.1634 [astro-ph].
[13] Cai, Y. F., Exploring bouncing cosmologies with cosmological surveys, Sci. China Phys. Mech. Astron.57 (2014) 1414, https://doi.org/10.1007/s11433-014-5512-3, arXiv: 1405. 1369 [hep-th].
[14] de Haro, J. and Cai, Y. F., An extended matter bounce scenario: Current status and challenges, Gen. Relativ. Grav.47(8) (2015) 95, arXiv: 1502.03230 [gr-qc]. · Zbl 1327.83309
[15] Lehners, J. L., Cosmic bounces and cyclic universes, Class. Quantum Gravity28 (2011) 204004, arXiv: 1106.0172 [hep-th]. · Zbl 1228.83136
[16] Lehners, J. L., Ekpyrotic and cyclic cosmology, Phys. Rep.465 (2008) 223, arXiv: 0806.1245 [astro-ph].
[17] Nojiri, S., Odintsov, S. D. and Oikonomou, V. K., Bounce universe history from unimodular \(F(R)\) gravity, Phys. Rev. D93(8) (2016) 084050, https://doi.org/10.1103/PhysRevD.93.084050, arXiv: 1601.04112 [gr-qc]. · Zbl 1347.83031
[18] Odintsov, S. D. and Oikonomou, V. K., Big-bounce with finite-time singularity: The \(F(R)\) gravity description, Int. J. Mod. Phys. D26(08) (2017) 1750085, https://doi.org/10.1142/S0218271817500857, arXiv: 1512.04787 [gr-qc]. · Zbl 1371.83156
[19] Odintsov, S. D. and Oikonomou, V. K., Matter bounce loop quantum cosmology from \(F(R)\) gravity, Phys. Rev. D90(12) (2014) 124083, https://doi.org/10.1103/PhysRevD.90.124083, arXiv: 1410.8183 [gr-qc].
[20] Liu, Z. G., Guo, Z. K. and Piao, Y. S., Obtaining the CMB anomalies with a bounce from the contracting phase to inflation, Phys. Rev. D88 (2013) 063539, https://doi.org/10.1103/PhysRevD.88.063539, arXiv: 1304.6527 [astro-ph.CO].
[21] Piao, Y. S., Feng, B. and Zhang, X. M., Suppressing CMB quadrupole with a bounce from contracting phase to inflation, Phys. Rev. D69 (2004) 103520, https://doi.org/10.1103/PhysRevD.69.103520, arXiv: hep-th/0310206.
[22] Ashtekar, A. and Singh, P., Loop quantum cosmology: A status report, Class. Quantum Gravity28 (2011) 213001, arXiv: 1108.0893 [gr-qc]. · Zbl 1230.83003
[23] Ashtekar, A., An introduction to loop quantum gravity through cosmology, Nuovo Cimento B122 (2007) 135, arXiv: gr-qc/0702030.
[24] Ashtekar, A., Pawlowski, T. and Singh, P., Quantum nature of the big bang, Phys. Rev. Lett.96 (2006) 141301, arXiv: gr-qc/0602086. · Zbl 1153.83417
[25] Ashtekar, A., Pawlowski, T. and Singh, P., Quantum nature of the big bang: An analytical and numerical investigation. I., Phys. Rev. D73 (2006) 124038, arXiv: gr-qc/0604013. · Zbl 1197.83047
[26] Ashtekar, A., Pawlowski, T. and Singh, P., Quantum nature of the big bang: Improved dynamics, Phys. Rev. D74 (2006) 084003, arXiv: gr-qc/0607039. · Zbl 1197.83047
[27] Ashtekar, A., Corichi, A. and Singh, P., Robustness of key features of loop quantum cosmology, Phys. Rev. D77 (2008) 024046, arXiv: 0710.3565 [gr-qc].
[28] Mielczarek, J., Stachowiak, T. and Szydlowski, M., Exact solutions for big bounce in loop quantum cosmology, Phys. Rev. D77 (2008) 123506, arXiv: 0801.0502 [gr-qc].
[29] Singh, P. and Soni, S. K., On the relationship between modifications to the Raychaudhuri equation and the canonical Hamiltonian structures, Class. Quantum Gravity33(12) (2016) 125001, arXiv: 1512.07473 [gr-qc]. · Zbl 1342.83016
[30] Haro, J., Amors, J. and Sal, L. A., The matter-ekpyrotic bounce scenario in loop quantum cosmology, J. Cosmol. Astropart. Phys.1709(09) (2017) 002, https://doi.org/10.1088/1475-7516/2017/09/002, arXiv: 1703.03710 [gr-qc].
[31] Sal, L. A., Amors, J. and de Haro, J., Qualitative study in loop quantum cosmology, Class. Quantum Gravity34(23) (2017) 235001, https://doi.org/10.1088/1361-6382/aa9311, arXiv: 1612.05480 [gr-qc]. · Zbl 1381.83135
[32] Amors, J., de Haro, J. and Odintsov, S. D., \(R + \alpha R^2\) loop quantum cosmology, Phys. Rev. D89(10) (2014) 104010, https://doi.org/10.1103/PhysRevD.89.104010, arXiv: 1402.3071 [gr-qc].
[33] Amors, J., de Haro, J. and Odintsov, S. D., Bouncing loop quantum cosmology from \(F(T)\) gravity, Phys. Rev. D87 (2013) 104037, https://doi.org/10.1103/PhysRevD.87.104037, arXiv: 1305.2344 [gr-qc].
[34] Bamba, K., de Haro, J. and Odintsov, S. D., Future singularities and teleparallelism in loop quantum cosmology, J. Cosmol. Astropart. Phys.1302 (2013) 008, https://doi.org/10.1088/1475-7516/2013/02/008, arXiv: 1211.2968 [gr-qc].
[35] Mielczarek, J., Hrycyna, O. and Szydlowski, M., Effective dynamics of the closed loop quantum cosmology, J. Cosmol. Astropart. Phys.0911 (2009) 014, https://doi.org/10.1088/1475-7516/2009/11/014, arXiv: 0906.2503 [gr-qc]. · Zbl 1177.83069
[36] Mielczarek, J. and Szydlowski, M., Emerging singularities in the bouncing loop cosmology, Phys. Rev. D77 (2008) 124008, https://doi.org/10.1103/PhysRevD.77.124008, arXiv: 0801.1073 [gr-qc].
[37] Mielczarek, J. and Szydlowski, M., Relic gravitons as the observable for loop quantum cosmology, Phys. Lett. B657 (2007) 20, https://doi.org/10.1016/j.physletb.2007.10.011, arXiv: 0705.4449 [gr-qc].
[38] Oikonomou, V. K., Inflation and bounce from classical and loop quantum cosmology imperfect fluids, Int. J. Mod. Phys. D26(10) (2017) 1750110, https://doi.org/10.1142/S0218271817501103, arXiv: 1703.09009 [gr-qc]. · Zbl 1372.83063
[39] Oikonomou, V. K., Reconstructing the evolution of the universe from loop quantum cosmology scalar fields, Phys. Rev. D94(4) (2016) 044004, https://doi.org/10.1103/PhysRevD.94.044004, arXiv: 1607.07107 [gr-qc].
[40] Odintsov, S. D., Oikonomou, V. K. and Saridakis, E. N., Superbounce and loop quantum ekpyrotic cosmologies from modified gravity: \(F(R), F(G)\) and \(F(T)\) theories, Ann. Phys.363 (2015) 141, https://doi.org/10.1016/j.aop.2015.08.021, arXiv: 1501.06591 [gr-qc]. · Zbl 1360.83093
[41] Haro, J., Makarenko, A. N., Myagky, A. N., Odintsov, S. D. and Oikonomou, V. K., Bouncing loop quantum cosmology in Gauss-Bonnet gravity, Phys. Rev. D92(12) (2015) 124026, https://doi.org/10.1103/PhysRevD.92.124026, arXiv: 1506.08273 [gr-qc].
[42] Barrow, J. D. and Saich, P., The behavior of intermediate inflationary universes, Phys. Lett. B249 (1990) 406.
[43] Barrow, J. D. and Liddle, A. R., Perturbation spectra from intermediate inflation, Phys. Rev. D47(12) (1993) R5219, arXiv: astro-ph/9303011.
[44] Barrow, J. D., Liddle, A. R. and Pahud, C., Intermediate inflation in light of the three-year WMAP observations, Phys. Rev. D74 (2006) 127305, arXiv: astro-ph/0610807.
[45] Barrow, J. D., Lagos, M. and Magueijo, J., Observational constraints on dual intermediate inflation, Phys. Rev. D89(8) (2014) 083525, arXiv: 1401.7491 [astro-ph.CO].
[46] Oikonomou, V. K., Viability of the intermediate inflation scenario with \(F(T)\) gravity, Phys. Rev. D95(8) (2017) 084023, https://doi.org/10.1103/PhysRevD.95.084023, arXiv: 1703.10515 [gr-qc].
[47] Oikonomou, V. K., On the expanding phase of a singular bounce and intermediate inflation: The modified gravity description, Mod. Phys. Lett. A32 (2017) 1750067, https://doi.org/10.1142/S0217732317500675, arXiv: 1703.06713 [gr-qc]. · Zbl 1360.83058
[48] Li, B., Barrow, J. D. and Mota, D. F., The cosmology of modified Gauss-Bonnet gravity, Phys. Rev. D76 (2007) 044027, https://doi.org/10.1103/PhysRevD.76.044027, arXiv: 0705.3795 [gr-qc].
[49] Nojiri, S. and Odintsov, S. D., Modified Gauss-Bonnet theory as gravitational alternative for dark energy, Phys. Lett. B631 (2005) 1, arXiv: hep-th/0508049. · Zbl 1247.83292
[50] Nojiri, S., Odintsov, S. D. and Gorbunova, O. G., Dark energy problem: From phantom theory to modified Gauss-Bonnet gravity, J. Phys. A39 (2006) 6627, arXiv: hep-th/0510183. · Zbl 1097.83030
[51] Cognola, G., Elizalde, E., Nojiri, S., Odintsov, S. D. and Zerbini, S., Dark energy in modified Gauss-Bonnet gravity: Late-time acceleration and the hierarchy problem, Phys. Rev. D73 (2006) 084007, arXiv: hep-th/0601008.
[52] Elizalde, E., Myrzakulov, R., Obukhov, V. V. and Saez-Gomez, D., LambdaCDM epoch reconstruction from \(F(R, \mathcal{G})\) and modified Gauss-Bonnet gravities, Class. Quantum Gravity27 (2010) 095007, arXiv: 1001.3636 [gr-qc]. · Zbl 1190.83114
[53] Izumi, K., Causal structures in Gauss-Bonnet gravity, Phys. Rev. D90(4) (2014) 044037, arXiv: 1406.0677 [gr-qc].
[54] Oikonomou, V. K., Gauss-Bonnet cosmology unifying late and early-time acceleration eras with intermediate eras, Astrophys. Space Sci.361(7) (2016) 211, https://doi.org/10.1007/s10509-016-2800-6, arXiv: 1606.02164 [gr-qc].
[55] Oikonomou, V. K., Singular bouncing cosmology from Gauss-Bonnet modified gravity, Phys. Rev. D92(12) (2015) 124027, https://doi.org/10.1103/PhysRevD.92.124027, arXiv: 1509.05827 [gr-qc].
[56] Escofet, A. and Elizalde, E., Gauss-Bonnet modified gravity models with bouncing behavior, Mod. Phys. Lett. A31(17) (2016) 1650108, https://doi.org/10.1142/S021773231650108X, arXiv: 1510.05848 [gr-qc]. · Zbl 1344.83039
[57] Makarenko, A. N. and Myagky, A. N., The asymptotic behavior of bouncing cosmological models in \(F(\mathcal{G})\) gravity theory, Int. J. Geom. Meth. Mod. Phys.14(10) (2017) 1750148, https://doi.org/10.1142/S0219887817501481, arXiv: 1708.03592 [gr-qc]. · Zbl 1376.83033
[58] Bamba, K., Makarenko, A. N., Myagky, A. N. and Odintsov, S. D., Bouncing cosmology in modified Gauss-Bonnet gravity, Phys. Lett. B732 (2014) 349, https://doi.org/10.1016/j.physletb.2014.04.004, arXiv: 1403.3242 [hep-th]. · Zbl 1360.83082
[59] Makarenko, A. N., The role of Lagrange multiplier in Gauss-Bonnet dark energy, Int. J. Geom. Meth. Mod. Phys.13(05) (2016) 1630006, https://doi.org/10.1142/S0219887816300063 · Zbl 1339.83086
[60] Barrow, J. D. and Graham, A. A. H., Singular inflation, Phys. Rev. D91(8) (2015) 083513, https://doi.org/10.1103/PhysRevD.91.083513, arXiv: 1501.04090 [gr-qc].
[61] Nojiri, S., Odintsov, S. D. and Oikonomou, V. K., Quantitative analysis of singular inflation with scalar-tensor and modified gravity, Phys. Rev. D91(8) (2015) 084059, https://doi.org/10.1103/PhysRevD.91.084059, arXiv: 1502.07005 [gr-qc].
[62] Odintsov, S. D. and Oikonomou, V. K., Singular inflationary universe from \(F(R)\) gravity, Phys. Rev. D92(12) (2015) 124024, https://doi.org/10.1103/PhysRevD.92.124024, arXiv: 1510.04333 [gr-qc].
[63] Oikonomou, V. K., Constraints on singular evolution from gravitational baryogenesis, Int. J. Geom. Meth. Mod. Phys.13(03) (2016) 1650033, https://doi.org/10.1142/S021988781650033X, arXiv: 1512.04095 [gr-qc]. · Zbl 1338.83155
[64] Nojiri, S., Odintsov, S. D. and Tsujikawa, S., Properties of singularities in (phantom) dark energy universe, Phys. Rev. D71 (2005) 063004, https://doi.org/10.1103/PhysRevD.71.063004, arXiv: hep-th/0501025.
[65] Nojiri, S. and Odintsov, S. D., Quantum escape of sudden future singularity, Phys. Lett. B595 (2004) 1, https://doi.org/10.1016/j.physletb.2004.06.060, arXiv: hep-th/0405078.
[66] Nojiri, S. and Odintsov, S. D., Inhomogeneous equation of state of the universe: Phantom era, future singularity and crossing the phantom barrier, Phys. Rev. D72 (2005) 023003, https://doi.org/10.1103/PhysRevD.72.023003, arXiv: hep-th/0505215.
[67] Barrow, J. D. and Tsagas, C. G., New isotropic and anisotropic sudden singularities, Class. Quantum Gravity22 (2005) 1563, arXiv: gr-qc/0411045. · Zbl 1072.83030
[68] Barrow, J. D., More general sudden singularities, Class. Quantum Gravity21 (2004) 5619, arXiv: gr-qc/0409062. · Zbl 1065.83048
[69] Barrow, J. D., Sudden future singularities, Class. Quantum Gravity21 (2004) 79, arXiv: gr-qc/0403084. · Zbl 1055.83027
[70] Nojiri, S. and Odintsov, S. D., The final state and thermodynamics of dark energy universe, Phys. Rev. D70 (2004) 103522, https://doi.org/10.1103/PhysRevD.70.103522, arXiv: hep-th/0408170.
[71] Odintsov, S. D. and Oikonomou, V. K., Bouncing cosmology with future singularity from modified gravity, Phys. Rev. D92(2) (2015) 024016, https://doi.org/10.1103/PhysRevD.92.024016, arXiv: 1504.06866 [gr-qc].
[72] Brevik, I. and Timoshkin, A. V., Dissipative universe-inflation with soft singularity, Int. J. Geom. Meth. Mod. Phys.14(04) (2017) 1750061, https://doi.org/10.1142/S021988781750061X, arXiv: 1612.06689 [gr-qc]. · Zbl 1362.83025
[73] (Ade, P. A. R.et al.), Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys.594 (2016) 20, arXiv: 1502.02114 [astro-ph.CO].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.