×

Dissipative universe-inflation with soft singularity. (English) Zbl 1362.83025

Summary: We investigate the early-time accelerated universe after the Big Bang. We pay attention to the dissipative properties of the inflationary universe in the presence of a soft type singularity, making use of the parameters of the generalized equation of state of the fluid. Flat Friedmann-Robertson-Walker metric is being used. We consider cosmological models leading to the so-called type IV singular inflation. Our obtained theoretical results are compared with observational data from the Planck satellite. The theoretical predictions for the spectral index turn out to be in agreement with the data, while for the scalar-to-tensor ratio, there are minor deviations.

MSC:

83F05 Relativistic cosmology
83C75 Space-time singularities, cosmic censorship, etc.
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)

References:

[1] . (Riess, A. G.et al.), Observation evidence from super-novae for an accelerating, Astron. J.116 (1998) 1009, arXiv:astro-ph/9805201.
[2] . (Perlmutter, S.et al.), Measurements of Omega and Lambda from 42 high-redshift, Astrophys. J.517 (1999) 565-586, arXiv:astro-ph/9812133. · Zbl 1368.85002
[3] Caldwell, R. R., Kamionkowski, M. and Weinberg, N. N., Phantom energy and cosmic doomsday, Phys. Rev. Lett.91 (2003) 071301, arXiv:astro-ph/0302506.
[4] Nojiri, S. and Odintsov, S. D., Quantum de Sitter cosmology and phantom matter, Phys. Lett. B562 (2003) 147-152, arXiv:hep-th/0303117. · Zbl 1027.83543
[5] Frampton, H., Ludwick, K. J. and Scherrer, R. J., The little Rip, Phys. Rev. D84 (2011) 063003, arXiv:1106.4996v1 [astro-ph. CO].
[6] Brevik, I., Elizalde, E., Nojiri, S. and Odintsov, S. D., Viscous Little Rip cosmology, Phys. Rev. D84 (2011) 103508, arXiv:1107.4642 [hep-th].
[7] Frampton, P. H., Ludwick, K. J., Nojiri, S., Odintsov, S. D. and Scherrer, R. J., Models for little Rip dark energy, Phys. Lett. B708 (2012) 204-211, arXiv:1108.0067v2 [hep-th].
[8] Frampton, P. H., Ludwick, K. J. and Scherrer, R. J., Pseudo-rip: Cosmological models intermediate between the cosmological constant and the little rip, Phys. Rev. D85 (2012) 083001, arXiv:1112.2964v2 [astro-ph. CO].
[9] Wei, H., Wang, L. F. and Guo, X. J., Quasi-Rip: A new type of rip model without cosmic doomsday, Phys. Rev. D86 (2012) 083003, arXiv:1207.2898.v1 [gr-qc].
[10] Brandenberger, R. H., Alternatives to cosmological inflation, Int. J. Mod. Phys. Conf. Ser.01 (2011) 67, arXiv:0902.4731 [hep-th].
[11] Novello, M. and Perez Bergliaffa, S. E., Bouncing cosmologies, Phys. Rep.463 (2008) 127-213.
[12] Bamba, K., Makarenko, A. N., Myagky, A. N., Nojiri, S. and Odintsov, S. D., Bounce cosmology from \(F(R)\) gravity and \(F(R)\) bigravity, J. Cosmol. Astropart. Phys.008 (2014) 01, arXiv:1309.3748v1 [hep-th].
[13] Cai, Y.-F., Chen, S.-H., Dent, J. B., Dutta, S. and Saridakis, E. N., Matter bounce cosmology with the \(f(T)\) gravity, Class. Quantum Grav.28 (2011) 215011, arXiv:1104.4349[astro-ph.CO]. · Zbl 1230.83074
[14] Linde, A. D., Inflationary cosmology, Lect. Notes Phys.738 (2008) 1, arXiv:0705.0164 [hep-th]. · Zbl 1172.83004
[15] Gorbunov, D. S. and Rubakov, V. A., Introduction to the Theory of the Early Universe: Hot Big Bang Theory (World Scientific, Singapore, 2011). · Zbl 1217.83002
[16] Brandenberger, R. H., Introduction to early universe cosmology, PoS ICFI001 (2010) 1-70, arXiv:1103.2271v1 [astro-ph.CO].
[17] Nojiri, S. and Odintsov, S. D., Inhomogeneous equation of state of the universe: Phantom era, future singularity and crossing the phantom barrier, Phys. Rev. D72 (2005) 023003, arXiv:hep-th/0505215.
[18] S. Capozziello, S. Nojiri, S. D. Odintsov and A. Troisi, Cosmological viability of \(f(R)\)-gravity as an ideal fluid and its compatibility with a matter dominated phase, Phys. Lett. B639 (2006) 135-143, arXiv:astro-ph/0604431; S. Nojiri and S. D. Odintsov, Introduction to modified gravity and gravitational alternative for dark energy, Phys. Rev. D70 (2004) 103522; Phys. Lett. B562 (2003) 147-152; S. Nojiri and S. D. Odintsov, Introduction to modified gravity and gravitational alternative for dark energy, eConf. C0602061 (2006) 06; Int. J. Geom. Methods Mod. Phys.4 (2007) 115-145, arXiv:hep-th/061213; S. Nojiri and S. D. Odintsov, Modified gravity with negative and positive powers of the curvature: Verification of the inflation and of the cosmic acceleration, Phys. Rev. D68 (2003) 123512, hep-th/0307288. · Zbl 1112.83047
[19] S. Nojiri, S. D. Odintsov and S. Tsujikawa, Properties of singularities in (phantom) dark energy universe, Phys. Rev. D71 (2005) 063004, arXiv:0501025[hep-th]; J. D. Barrow, More general sudden singularities, Class. Quant. Grav.21 (2004) 5619-5622, arXiv:gr-qc/0409062.
[20] Nojiri, S., Odintsov, S. D. and Oikonomou, V. K., Singular inflation from generalized equation of state fluids, Phys. Lett. B747 (2015) 310-320, arXiv:1506.03307 [gr-qc]. · Zbl 1369.83115
[21] Brevik, I., Obukhov, V. V. and Timoshkin, A. V., Inflationary cosmology leading to a soft type singularity, Mod. Phys. Lett. A31 (2016) 1650105, arXiv:1604.04748 [gr-qc]. · Zbl 1344.83053
[22] Nojiri, S., Odintsov, S. D. and Oikonomou, V. K., A quantitative analysis of singular inflation with scalar-tensor and modified gravity, Phys. Rev. D91 (2015) 084059, arXiv:1502.07005 [gr-qc].
[23] S. Nojiri, S. D. Odintsov, V. K. Oikonomou and E. N. Saridakis, Singular cosmological evolution using canonical and phantom scalar fields, J. Cosmol. Astropart. Phys.1509 (2015) 044, arXiv:1503.08443 [gr-qc]; S. D. Odintsov and V. K. Oikonomou, Singular \(F(R)\) cosmology unifying early and late-time acceleration with matter and radiation domination era, Class. Quantum Grav.33 (2016) 125029, arXiv:1602.03309 [gr-qc]; S. D. Odintsov and V. K. Oikonomou, Inflation in exponential scalar model and finite-time singularity induced instability, Phys. Rev. D92 (2015) 024058, arXiv:1507.05273 [gr-qc]. · Zbl 1342.83545
[24] Odintsov, S. D. and Oikonomou, V. K., Singular deformations of nearly R2 inflation potentials, Class. Quantum Grav.32 (2015) 23, 235011, arXiv:1504.01772 [gr-qc]. · Zbl 1329.83162
[25] Brevik, I., Børven, J. M. and Ng, S., Crossing of the \(w = - 1\) barrier in two-fluid viscous modified gravity, Gen. Relativ. Grav.38 (2006) 907-915. · Zbl 1093.83047
[26] Caapozzielli, S., Cardone, V. F., Elizalde, E., Nojiri, S. and Odintsov, S. D., Observational constraints on dark energy with generalized equation of state, Phys. Rev. D73 (2006) 043512, arXiv:astro-ph/0508350.
[27] Brevik, I., Nojiri, S., Odintsov, S. D. and Saez-Gomez, D., Eur. Phys. J. C69 (2010) 563-574.
[28] Brevik, I., Obukhov, V. V. and Timoshkin, A. V., Dark energy coupled with dark matter in viscous fluid cosmology, Astrophys. Space Sci.355 (2015) 399-403.
[29] Komatsu, N. and Kimura, S., Entropic cosmology in a dissipative universe, Phys. Rev. D90 (2014) 123516, arXiv:1408.4836v1 [astro-ph.CO].
[30] Brevik, I., Obukhov, V. V. and Timoshkin, A. V., Cosmological models coupled with dark matter in a dissipative universe, Astrophys. Space Sci.359 (2015) 11.
[31] Brevik, I., Elizalde, E., Gorbunova, O. and Timoshkin, A. V., A FRW dark fluid with a non-linear inhomogeneous equation of state, Eur. Phys. J. C52 (2007) 223-228.
[32] Myrzakulov, R. and Sebastiani, S., Inhomogeneous viscous fluids for inflation, Astrophys. Space Sci.356 (2015) 205-213.
[33] . (Ade, P. A. R.et al.), Planck 2013 results. XXII. Constraints on inflation, Astron. Astrophys.571 (2014) 1-43, arXiv:1303.5082 [astro-ph. CO].
[34] Bamba, K., Nojiri, S., Odintsov, S. D. and Saez-Gomez, D., Inflationary universe from perfect fluid and \(F(R)\) gravity and its comparison with observational data, Phys. Rev. D90 (2014) 124061, arXiv:1410.3993 [hep-th]. · Zbl 1381.83092
[35] . (Ade, P. A. R.et al.), BICEP2 I: Detection of B-mode polarization at degree angular scales, Phys. Rev. Lett.112 (2014) 1-26, arXiv:1403. 3985 [astro-ph. CO].
[36] Jimenez, J. B., Lazkoz, R., Saez-Gomes, D. and Salzano, V., Observational constraints on cosmological future singularities, Eur. Phys. J. C76 (2016) 631, arXiv:1602.06211 [gr-qc].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.