×

On the containment problem. (English) Zbl 1386.14045

In the present paper, the authors deliver an interesting overview of the so-called containment problem for ordinary and symbolic powers of homogeneous ideals. Let us briefly present the main idea standing behind this subject. Let \(I \subset R=\mathbb{K}[x_{0},\dots, x_{N}]\) be a homogeneous ideal. If \(I = \langle f_{1},\dots, f_{n}\rangle\) is given explicitly in terms of generators, then the \(r\)-th ordinary power of \(I\), denote by \(I^{r}\), is generated by products \(f_{i_{1}}\cdots f_{i_{r}}\) of length \(r\). Now we can define the \(m\)-th symbolic power of \(I\), denoted by \(I^{(m)}\), as \[ I^{(m)} = \bigcap_{P \in \text{Ass}(I)} (I^{m}R_{P} \cap R), \] where the intesection is taken in the field of fractions and \(\text{Ass}(I)\) denotes is the set of associated primes of \(I\). The cornerstone of this subject is a merger of the following two natural problems.
Problem 1. Let \(I \subset R\) be a homogeneous ideal. Determine generators of \(I^{(m)}\) for a certain \(m\geq 2\).
Problem 2. Decide for which \(m\) and \(r\) there is the containment \(I^{(m)} \subset I^{r}\).
The groundbreaking and elegant result due to Ein, Lazarsfeld and Smith in characteristic \(0\), and due to Hochster and Huneke in positive characteristic, provides a fundamental relation between ordinary and symbolic powers of homogeneous ideals.
Theorem. Let \(I \subset R\) be a homogeneous ideal such that every component of its zero locus \(V(I)\) has codimension at most \(e\). Then the containment \[ I^{(m)} \subset I^r \] holds for all \(m\geq er\).
It is natural to ask whether the above result is sharp. In particular, the very first attempt towards this question was indicated by C. Huneke [“Open problems on powers of ideals”, Notes from a workshop on Integral Closure, Multiplier Ideals and Cores, AIM, December 2006, http://www.aimath.org/WWN/integralclosure/Huneke.pdf].
Question (Huneke). Let \(I\) be a saturated ideal of a reduced finite set of points in \(\mathbb{P}^{2}\). Does the containment \[ I^{(3)} \subset I^{2} \] hold?
This problem was further generalized by Harbourne and Bocci jointly with Huneke to any arbitrary projective space \(\mathbb{P}^{N}\).
Question (Bocci-Harbourne-Huneke). Let \(I\) be a saturated ideal of a finite set of reduced points in \(\mathbb{P}^{N}\). Does the containment \[ I^{(m)} \subset I^{r} \] hold for \(m \geq Nr - (N-1)\)?
The main aim of this overview is to deliver recent developments on the containment problem and to present some counterexamples to the above questions that have been discovered recently. The first counterexample to Huneke’s question was found by Dumnicki, Szemberg and Tutaj-Gasińska [M. Dumnicki et al., J. Algebra 393, 24–29 (2013; Zbl 1297.14008)] – their ideal \(I\) is given by \(12\) triple points determined by the dual Hesse configuration of \(9\) lines in the complex projective plane. Surprisingly, almost all known counterexamples to Huneke’s questions are determined by very specific arrangements of lines possessing some extremal properties – these are coming from classical reflection groups and some of them play an important role in the so-called orchard problem. It would be really nice to know whether we can find some natural numerical criteria which could possibly allow to determine new non-trivial counterexamples to the questions. At the end of the overview, the authors present a list of open problems to think about, some of them are really challenging.

MSC:

14C20 Divisors, linear systems, invertible sheaves
14J26 Rational and ruled surfaces
14N20 Configurations and arrangements of linear subspaces
13A15 Ideals and multiplicative ideal theory in commutative rings
13F20 Polynomial rings and ideals; rings of integer-valued polynomials

Citations:

Zbl 1297.14008

Software:

SINGULAR

References:

[1] Artebani, M., Dolgachev, I.: The Hesse pencil of plane cubic curves. L’Enseignement Mathématique. Revue Internationale. 2e Série 55, 235-273 (2009) · Zbl 1192.14024
[2] Bauer, Th, Di Rocco, S., Harbourne, B., Huizenga, J., Lundman, A., Pokora, P., Szemberg, T.: Bounded negativity and arrangements of lines. Int. Math. Res. Notices 2015, 9456-9471 (2015) · Zbl 1330.14007 · doi:10.1093/imrn/rnu236
[3] Bauer, Th., Di Rocco, S., Harbourne, B., Kapustka, M., Knutsen, A.L., Syzdek, W. and Szemberg, T.: A primer on Seshadri constants, pp. 33-70, In: Bates, D.J., Besana, G.-M., Di Rocco, S., Wampler, C.W. (eds.) Interactions of Classical and Numerical Algebraic Geometry, Proceedings of a Conference in Honor of A. J. Sommese, held at Notre Dame, May 22-24, 2008. Contemporary Mathematics, vol. 496 (2009) · Zbl 1184.14008
[4] Bocci, C., Cooper, S., Harbourne, B.: Containment results for various configurations of points in \[{\mathbb{P}}^N\] PN. J. Pure Appl. Algebra 218, 65-75 (2014) · Zbl 1285.13029 · doi:10.1016/j.jpaa.2013.04.012
[5] Bocci, C., Harbourne, B.: Comparing powers and symbolic powers of ideals. J. Algebr. Geom. 19, 399-417 (2010) · Zbl 1198.14001 · doi:10.1090/S1056-3911-09-00530-X
[6] Bocci, C., Harbourne, B.: The resurgence of ideals of points and the containment problem. Proc. Am. Math. Soc. 138, 1175-1190 (2010) · Zbl 1200.14018 · doi:10.1090/S0002-9939-09-10108-9
[7] Ciliberto, C., Harbourne, B., Miranda, R., Roé, J.: Variations of Nagata’s conjecture. In: A Celebration of Algebraic Geometry, pp. 185-203, Clay Math. Proc., vol. 18. Amer. Math. Soc., Providence (2013) · Zbl 1317.14017
[8] Cutkosky, S.D., Kurano, K.: Asymptotic regularity of powers of ideals of points in a weighted projective plane. Kyoto J. Math. 51, 25-45 (2011) · Zbl 1225.14005 · doi:10.1215/0023608X-2010-019
[9] Czapliński, A., Główka, A., Malara, G., Lampa-Baczynska, M., Łuszcz-Świdecka, P., Pokora, P., Szpond, J.: A counterexample to the containment \[I^{(3)}\subset I^2I(3)\]⊂I2 over the reals. Adv. Geom. 16 (2016), doi:10.1515/advgeom-2015-0036 · Zbl 1333.13005
[10] Decker, W., Greuel, G.-M.; Pfister, G., Schönemann, H.: Singular 4-0-2—a computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2015)
[11] Dumnicki, M.: Containments of symbolic powers of ideals of generic points in \[{\mathbb{P}}^3\] P3. Proc. Am. Math. Soc. 143, 513-530 (2015) · Zbl 1342.14122 · doi:10.1090/S0002-9939-2014-12273-8
[12] Dumnicki, M., Harbourne, B., Nagel, U., Seceleanu, A., Szemberg, T., Tutaj-Gasińska, H.: Resurgences for ideals of special point configurations in \[{\mathbb{P}}^N\] PN coming from hyperplane arrangements. J. Algebra 443, 383-394 (2015) · Zbl 1329.13035 · doi:10.1016/j.jalgebra.2015.07.022
[13] Dumnicki, M., Szemberg, T., Tutaj-Gasińska, H.: A vanishing theorem and symbolic powers of planar point ideals. LMS J. Comput. Math. 16, 373-387 (2013) · Zbl 1319.14008 · doi:10.1112/S1461157013000181
[14] Dumnicki, M., Szemberg, T., Tutaj-Gasińska, H.: Counterexamples to the \[I^{(3)} \subset I^2I(3)\]⊂I2 containment. J. Algebra 393, 24-29 (2013) · Zbl 1297.14008 · doi:10.1016/j.jalgebra.2013.06.039
[15] Ein, L., Lazarsfeld, R., Smith, K.: Uniform bounds and symbolic powers on smooth varieties. Invent. Math. 144, 241-252 (2001) · Zbl 1076.13501 · doi:10.1007/s002220100121
[16] Eisenbud, D.: Commutative algebra. With a view toward algebraic geometry. Graduate Texts in Mathematics, vol. 150. Springer, New York (1995) · Zbl 0819.13001
[17] Geramita, A.V., Harbourne, B., Migliore, J.: Star configurations in \[{\mathbb{P}}^n\] Pn. J. Algebra 376, 279-299 (2013) · Zbl 1284.14073 · doi:10.1016/j.jalgebra.2012.11.034
[18] Harbourne, B., Huneke, C.: Are symbolic powers highly evolved? J. Ramanujan Math. Soc. 28, 311-330 (2013) · Zbl 1296.13018
[19] Harbourne, B., Seceleanu, A.: Containment counterexamples for ideals of various configurations of points in \[{\mathbb{P}}^N\] PN. J. Pure Appl. Algebra 219, 1062-1072 (2015) · Zbl 1318.13031 · doi:10.1016/j.jpaa.2014.05.034
[20] Hochster, M., Huneke, C.: Comparison of symbolic and ordinary powers of ideals. Invent. Math. 147, 349-369 (2002) · Zbl 1061.13005 · doi:10.1007/s002220100176
[21] Jeurissen, R.H., van Os, C.H., Steenbrink, J.H.M.: The configuration of bitangents of the Klein curve. Discrete Math. 132, 83-96 (1994) · Zbl 0808.05059 · doi:10.1016/0012-365X(94)90233-X
[22] Keane, R.W., Küronya, A., McMahon, E.: An elementary approach to containment relations between symbolic and ordinary powers of certain monomial ideals. arXiv:1512.07092 · Zbl 1387.14041
[23] Klein, F.: Über die Transformation siebenter Ordnung der elliptischen Functionen. Math. Ann. 14, 428-471 (1879) · JFM 11.0297.01 · doi:10.1007/BF01677143
[24] Lampa-Baczyńska, M., Malara, G.: On the containment hierarchy for simplicial ideals. J. Pure Appl. Algebra 219, 5402-5412 (2015) · Zbl 1328.13030 · doi:10.1016/j.jpaa.2015.05.022
[25] Lampa-Baczyńska, M., Szpond, J.: From Pappus Theorem to parameter spaces of some extremal line point configurations and applications. Geom. Dedicata (to appear). arXiv:1509.03883 · Zbl 1366.14048
[26] Nagel, U., Seceleanu, A.: Ordinary and symbolic Rees algebras for ideals of Fermat point configurations. J. Algebra 468, 80-102 (2016) · Zbl 1439.13017
[27] Seceleanu, A.: A homological criterion for the containment between symbolic and ordinary powers of some ideals of points in \[{\mathbb{P}}^2\] P2. J. Pure Appl. Algebra 219, 4857-4871 (2015) · Zbl 1318.13032 · doi:10.1016/j.jpaa.2015.03.009
[28] Sidman, J., Sullivant, S.: Prolongations and computational algebra. Can. J. Math. 61, 930-949 (2009) · Zbl 1174.13042 · doi:10.4153/CJM-2009-047-5
[29] Swanson, I.: Linear equivalence of topologies. Math. Z. 234, 755-775 (2000) · Zbl 1010.13015 · doi:10.1007/s002090050007
[30] Urzúa, G.A.: Arrangements of curves and algebraic surfaces. Thesis (Ph.D.) University of Michigan. ISBN: 978-0549-82049-9 (2008) · JFM 11.0297.01
[31] Wiman, A.: Über eine einfache Gruppe von \[360360\] ebenen Collineationen. Math. Ann. 47, 531-556 (1896) · JFM 27.0103.03 · doi:10.1007/BF01445800
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.