×

Comparing powers and symbolic powers of ideals. (English) Zbl 1198.14001

Let \(I\) be the homogeneous ideal of a projective variety \(V\), defined over an arbitrary algebraically closed field. The symbolic power \(I^{(m)}\) contains forms vanishing to a certain order, at general points of components of \(V\). The knowledge of relations between symbolic powers \(I^{(m)}\) and usual powers \(I^r\), especially when \(V\) is a finite set of points, would be of valuable help in the study of several interpolation problems. Unfortunately, these relations are widely unknown, even for low values of \(r,m\). For instance, in the case where \(I\) represents some set of points in \(\mathbb P^2\), the question whether \(I^{(3)}\subset I^2\) or not, is open.
To study pairs \((m,r)\) for which \(I^{(m)}\subset I^r\), the authors introduce the resurgence index \(\rho\) of \(I\) as: \[ \rho(I)=\sup\{m/r: I^{(m)}\not\subset I^r\}, \] which always exists, when \(I\) is radical. Then, the authors study relations between the resurgence and other invariants of the ideal \(I\). When \(V\) is zero–dimensional, the authors prove a bound for \(\rho(I)\), in terms of the minimal degree of forms in \(I\) and a Seshadri constant of the ideal. Several applications of the bound are listed. In particular, the authors show that \(I^{(3)}\subset I^2\), when \(V\) is a general set of points in \(\mathbb P^2\).

MSC:

14A05 Relevant commutative algebra
13A15 Ideals and multiplicative ideal theory in commutative rings

Keywords:

symbolic powers

References:

[1] Alessandro Arsie and Jon Eivind Vatne, A note on symbolic and ordinary powers of homogeneous ideals, Ann. Univ. Ferrara Sez. VII (N.S.) 49 (2003), 19 – 30 (English, with English and Italian summaries). · Zbl 1131.13300
[2] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. · Zbl 0175.03601
[3] Paul Biran, Constructing new ample divisors out of old ones, Duke Math. J. 98 (1999), no. 1, 113 – 135. · Zbl 0961.14005 · doi:10.1215/S0012-7094-99-09803-4
[4] C. Bocci and B. Harbourne. The resurgence of ideals of points and the containment problem, to appear, Proc. Amer. Math. Soc. · Zbl 1200.14018
[5] M. Chardin. Regularity of ideals and their powers, Prépublication 364, Institut de Mathematiques de Jussieu, 2004.
[6] Marc Chardin, Some results and questions on Castelnuovo-Mumford regularity, Syzygies and Hilbert functions, Lect. Notes Pure Appl. Math., vol. 254, Chapman & Hall/CRC, Boca Raton, FL, 2007, pp. 1 – 40. · Zbl 1127.13014 · doi:10.1201/9781420050912.ch1
[7] Steven Dale Cutkosky, Huy Tài Hà, Hema Srinivasan, and Emanoil Theodorescu, Asymptotic behavior of the length of local cohomology, Canad. J. Math. 57 (2005), no. 6, 1178 – 1192. · Zbl 1095.13015 · doi:10.4153/CJM-2005-046-4
[8] Jean-Pierre Demailly, Singular Hermitian metrics on positive line bundles, Complex algebraic varieties (Bayreuth, 1990) Lecture Notes in Math., vol. 1507, Springer, Berlin, 1992, pp. 87 – 104. · Zbl 0784.32024 · doi:10.1007/BFb0094512
[9] Lawrence Ein, Robert Lazarsfeld, and Karen E. Smith, Uniform bounds and symbolic powers on smooth varieties, Invent. Math. 144 (2001), no. 2, 241 – 252. · Zbl 1076.13501 · doi:10.1007/s002220100121
[10] David Eisenbud, Craig Huneke, and Bernd Ulrich, The regularity of Tor and graded Betti numbers, Amer. J. Math. 128 (2006), no. 3, 573 – 605. · Zbl 1105.13017
[11] Anthony V. Geramita, Alessandro Gimigliano, and Yves Pitteloud, Graded Betti numbers of some embedded rational \?-folds, Math. Ann. 301 (1995), no. 2, 363 – 380. · Zbl 0813.14008 · doi:10.1007/BF01446634
[12] A. V. Geramita, B. Harbourne and J. Migliore. Classifying Hilbert functions of fat point subschemes in \( {\mathbf P}^2\), Collect. Math. 60, 2 (2009), 159-192. · Zbl 1186.14008
[13] A. V. Geramita, J. Migliore, and L. Sabourin, On the first infinitesimal neighborhood of a linear configuration of points in \Bbb P², J. Algebra 298 (2006), no. 2, 563 – 611. · Zbl 1107.14048 · doi:10.1016/j.jalgebra.2006.01.035
[14] Elena Guardo and Brian Harbourne, Resolutions of ideals of any six fat points in \?², J. Algebra 318 (2007), no. 2, 619 – 640. · Zbl 1139.14041 · doi:10.1016/j.jalgebra.2007.09.018
[15] Brian Harbourne, Seshadri constants and very ample divisors on algebraic surfaces, J. Reine Angew. Math. 559 (2003), 115 – 122. · Zbl 1053.14008 · doi:10.1515/crll.2003.044
[16] Brian Harbourne, Complete linear systems on rational surfaces, Trans. Amer. Math. Soc. 289 (1985), no. 1, 213 – 226. · Zbl 0609.14004
[17] Brian Harbourne, An algorithm for fat points on \?², Canad. J. Math. 52 (2000), no. 1, 123 – 140. · Zbl 0963.14021 · doi:10.4153/CJM-2000-006-6
[18] Brian Harbourne, On Nagata’s conjecture, J. Algebra 236 (2001), no. 2, 692 – 702. · Zbl 1014.14007 · doi:10.1006/jabr.2000.8515
[19] Brian Harbourne and Joaquim Roé, Discrete behavior of Seshadri constants on surfaces, J. Pure Appl. Algebra 212 (2008), no. 3, 616 – 627. · Zbl 1132.14004 · doi:10.1016/j.jpaa.2007.06.018
[20] B. Harbourne and J. Roé. Extendible Estimates of multipoint Seshadri Constants, preprint, math.AG/0309064, 2003.
[21] B. Harbourne and J. Roé. Computing multi-point Seshadri constants on \( {\mathbf P}^2\), to appear, Bulletin of the Belgian Mathematical Society - Simon Stevin. · Zbl 1177.14065
[22] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. · Zbl 0367.14001
[23] André Hirschowitz, La méthode d’Horace pour l’interpolation à plusieurs variables, Manuscripta Math. 50 (1985), 337 – 388 (French, with English summary). · Zbl 0571.14002 · doi:10.1007/BF01168836
[24] Melvin Hochster, Criteria for equality of ordinary and symbolic powers of primes, Math. Z. 133 (1973), 53 – 65. · Zbl 0251.13012 · doi:10.1007/BF01226242
[25] Melvin Hochster and Craig Huneke, Comparison of symbolic and ordinary powers of ideals, Invent. Math. 147 (2002), no. 2, 349 – 369. · Zbl 1061.13005 · doi:10.1007/s002220100176
[26] Melvin Hochster and Craig Huneke, Fine behavior of symbolic powers of ideals, Illinois J. Math. 51 (2007), no. 1, 171 – 183. · Zbl 1127.13005
[27] Vijay Kodiyalam, Asymptotic behaviour of Castelnuovo-Mumford regularity, Proc. Amer. Math. Soc. 128 (2000), no. 2, 407 – 411. · Zbl 0929.13004
[28] Aihua Li and Irena Swanson, Symbolic powers of radical ideals, Rocky Mountain J. Math. 36 (2006), no. 3, 997 – 1009. · Zbl 1144.13002 · doi:10.1216/rmjm/1181069441
[29] Hideyuki Matsumura, Commutative algebra, W. A. Benjamin, Inc., New York, 1970. · Zbl 0441.13001
[30] Thierry Mignon, Systèmes de courbes planes à singularités imposées: le cas des multiplicités inférieures ou égales à quatre, J. Pure Appl. Algebra 151 (2000), no. 2, 173 – 195 (French, with English summary). · Zbl 0977.14015 · doi:10.1016/S0022-4049(99)00054-7
[31] Masayoshi Nagata, On rational surfaces. II, Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 33 (1960/1961), 271 – 293. · Zbl 0100.16801
[32] T. Bauer, S. Di Rocco, B. Harbourne, M. Kapustka, A. Knutsen, W. Syzdek, and T. Szemberg. A primer on Seshadri constants, to appear in the AMS Contemporary Mathematics series volume “Interactions of Classical and Numerical Algebraic Geometry,” Proceedings of a conference in honor of A.J. Sommese, held at Notre Dame, May 22-24 2008. · Zbl 1184.14008
[33] Joaquim Roé, A relation between one-point and multi-point Seshadri constants, J. Algebra 274 (2004), no. 2, 643 – 651. · Zbl 1060.14008 · doi:10.1016/j.jalgebra.2003.10.009
[34] Irena Swanson, Linear equivalence of ideal topologies, Math. Z. 234 (2000), no. 4, 755 – 775. · Zbl 1010.13015 · doi:10.1007/s002090050007
[35] Tomasz Szemberg and Halszka Tutaj-Gasińska, General blow-ups of the projective plane, Proc. Amer. Math. Soc. 130 (2002), no. 9, 2515 – 2524. · Zbl 1067.14009
[36] S. Takagi and K. Yoshida. Generalized test ideals and symbolic powers, preprint, 2007, math.AC/0701929.
[37] Zachariah C. Teitler, On the intersection of the curves through a set of points in \Bbb P², J. Pure Appl. Algebra 209 (2007), no. 2, 571 – 581. · Zbl 1113.14009 · doi:10.1016/j.jpaa.2006.07.007
[38] Halszka Tutaj-Gasińska, A bound for Seshadri constants on \Bbb P², Math. Nachr. 257 (2003), 108 – 116. · Zbl 1110.14303 · doi:10.1002/mana.200310082
[39] Geng Xu, Ample line bundles on smooth surfaces, J. Reine Angew. Math. 469 (1995), 199 – 209. · Zbl 0833.14028 · doi:10.1515/crll.1995.469.199
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.