×

On the topological 4-genus of torus knots. (English) Zbl 1385.57004

A conjecture by Thom asserts that algebraic curves in \(\mathbb C\mathbb P^2\) are genus-minimizing in their homology class (see [P. B. Kronheimer and T. S. Mrowka, Math. Res. Lett. 1, No. 6, 797–808 (1994; Zbl 0851.57023)]) or, more generally, that no smooth embedded surface in \(\mathbb C\mathbb P^2\) has smaller genus than an algebraic curve homologous to it. On the other hand, there are topological locally flat surfaces with genus strictly smaller than all algebraic curves homologous to them (see papers by L. Rudolph [Comment. Math. Helv. 59, 592–599 (1984; Zbl 0575.57003)], and by R. Lee and D. M. Wilczyński [Am. J. Math. 119, No. 5, 1119–1137 (1997; Zbl 0886.57027)]).
The knot theoretic version of the Thom conjecture asserts that the smooth slice genus of a positive braid knot coincides with its ordinary genus \(g\) (see [L. Rudolph, Bull. Am. Math. Soc., New Ser. 29, No. 1, 51–59 (1993; Zbl 0789.57004)]). Less is known about the topological locally flat slice genus \(g_4\) of positive braid knots, or even of torus knots. In the present paper it is shown that, for torus knots \(K\), \(g_4(K) \leq {6 \over 7} \, g(K)\) (excluding some small cases). As the authors note, this result is sharp since for the torus knot \(K = T(3,8)\), \(g_4(K) = 6\) and \(g(K) = 7\). A larger genus defect is attained for torus knots \(T(p,q)\) with large parameters \(p\) and \(q\) for which \({2 \over pq} \; g(T(p,q) = {2 \over pq} \; {1 \over 2}(p-1)(q-1)\) converges to 1 whereas, as the authors show, the limit of \({2 \over pq} \; g_4(T(p,q)\) is less than \({3 \over 4}\).

MSC:

57M25 Knots and links in the \(3\)-sphere (MSC2010)

Software:

PARI/GP

References:

[1] Baader, Sebastian, Scissor equivalence for torus links, Bull. Lond. Math. Soc., 44, 5, 1068-1078 (2012) · Zbl 1253.57003 · doi:10.1112/blms/bds044
[2] Sebastian Baader and Lukas Lewark: The stable 4-genus of alternating knots, 2015, to appear in Asian J. Math. arXiv:1505.03345. · Zbl 1386.57006
[3] J. Collins, Seifert matrix computation, retrieved 2015. A computer program to compute Seifert matrices from braids, available from http://www.maths.ed.ac.uk/ jcollins/SeifertMatrix/.
[4] Farb, Benson; Margalit, Dan, A primer on mapping class groups, Princeton Mathematical Series 49, xiv+472 pp. (2012), Princeton University Press, Princeton, NJ · Zbl 1245.57002
[5] Feller, Peter, The degree of the Alexander polynomial is an upper bound for the topological slice genus, Geom. Topol., 20, 3, 1763-1771 (2016) · Zbl 1386.57008 · doi:10.2140/gt.2016.20.1763
[6] Feller, Peter; McCoy, Duncan, On 2-bridge knots with differing smooth and topological slice genera, Proc. Amer. Math. Soc., 144, 12, 5435-5442 (2016) · Zbl 1351.57017
[7] Freedman, Michael H.; Quinn, Frank, Topology of 4-manifolds, Princeton Mathematical Series 39, viii+259 pp. (1990), Princeton University Press, Princeton, NJ · Zbl 0705.57001
[8] Freedman, Michael Hartley, The topology of four-dimensional manifolds, J. Differential Geom., 17, 3, 357-453 (1982) · Zbl 0528.57011
[9] Garoufalidis, Stavros; Teichner, Peter, On knots with trivial Alexander polynomial, J. Differential Geom., 67, 1, 167-193 (2004) · Zbl 1095.57007
[10] Gordon, C. McA.; Litherland, R. A.; Murasugi, K., Signatures of covering links, Canad. J. Math., 33, 2, 381-394 (1981) · Zbl 0469.57004 · doi:10.4153/CJM-1981-032-3
[11] Kauffman, Louis H.; Taylor, Laurence R., Signature of links, Trans. Amer. Math. Soc., 216, 351-365 (1976) · Zbl 0322.55003 · doi:10.2307/1997704
[12] Kronheimer, P. B.; Mrowka, T. S., The genus of embedded surfaces in the projective plane, Math. Res. Lett., 1, 6, 797-808 (1994) · Zbl 0851.57023 · doi:10.4310/MRL.1994.v1.n6.a14
[13] Lee, Ronnie; Wilczy\'nski, Dariusz M., Representing homology classes by locally flat surfaces of minimum genus, Amer. J. Math., 119, 5, 1119-1137 (1997) · Zbl 0886.57027
[14] Liechti, Livio, Signature, positive Hopf plumbing and the Coxeter transformation, Osaka J. Math., 53, 1, 251-266 (2016) · Zbl 1347.57016
[15] Livingston, Charles, The stable 4-genus of knots, Algebr. Geom. Topol., 10, 4, 2191-2202 (2010) · Zbl 1213.57015 · doi:10.2140/agt.2010.10.2191
[16] Murasugi, Kunio, On a certain numerical invariant of link types, Trans. Amer. Math. Soc., 117, 387-422 (1965) · Zbl 0137.17903 · doi:10.2307/1994215
[17] The PARI Group, Bordeaux: Pari/gp, version 2.7.4, 2015. Programming library available from http://pari.math.u-bordeaux.fr/.
[18] Powell, Mark, The four-genus of a link, Levine-Tristram signatures and satellites, J. Knot Theory Ramifications, 26, 2, 1740008, 28 pp. (2017) · Zbl 1361.57015 · doi:10.1142/S0218216517400089
[19] Rudolph, Lee, Nontrivial positive braids have positive signature, Topology, 21, 3, 325-327 (1982) · Zbl 0495.57003 · doi:10.1016/0040-9383(82)90014-3
[20] Rudolph, Lee, Some topologically locally-flat surfaces in the complex projective plane, Comment. Math. Helv., 59, 4, 592-599 (1984) · Zbl 0575.57003 · doi:10.1007/BF02566368
[21] Rudolph, Lee, Quasipositivity as an obstruction to sliceness, Bull. Amer. Math. Soc. (N.S.), 29, 1, 51-59 (1993) · Zbl 0789.57004 · doi:10.1090/S0273-0979-1993-00397-5
[22] Stallings, John R., Constructions of fibred knots and links. Algebraic and geometric topology, Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976, Proc. Sympos. Pure Math., XXXII, 55-60 (1978), Amer. Math. Soc., Providence, R.I. · Zbl 0394.57007
[23] Tristram, A. G., Some cobordism invariants for links, Proc. Cambridge Philos. Soc., 66, 251-264 (1969) · Zbl 0191.54703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.