×

Signature, positive Hopf plumbing and the Coxeter transformation (With appendix by Peter Feller and Livio Liechti). (English) Zbl 1347.57016

A conjecture formulated and popularized by the reviewer states that the signature of a positive link is bounded increasingly by its (negated) Euler characteristic (or Betti number, as used here). This paper proves (Theorem 1) such a linear lower bound for tree-like positive Hopf plumbing links (which are obviously positive). In contrast, it is shown that for A’Campo divide links (not necessarily positive, as follows from the remarks below), the signature cannot be linearly bounded from below by the genus. However, for slalom knots there is again a linear lower bound (Theorem 4).
There are several developments on the topics treated here that must be mentioned.
Baader-Dehornoy-Liechti have fully resolved the Increasing Bound Conjecture; in fact, they proved a linear lower bound for arbitrary positive links. Feller had previously given a linear lower bound for the positive braid links (for which a cube-root-like bound was known from the reviewer’s old work).
The result of A’Campo quoted in the Introduction has been extended to tree-like plumbing links for generalized Hopf bands (any positive number of full twists) by Hirasawa-Murasugi and independently (and more simply) by Baader and the reviewer (to appear).
Section 5 discusses Hoste’s conjecture on the zeros of the Alexander polynomial of an alternating knot or link and proposes an analogous conjecture (Conjecture 13) for a positive braid link. In the reviewer’s minor modification (and strengthening) it states this: if \(L\) is a positive braid link of \(n\) components, then any zero of the reduced Alexander polynomial \(\Delta_L(t)/(t^{1/2}-t^{-1/2})^{n-1}\) has real part smaller than \(1\). This conjecture may potentially trigger some intriguing piece of research. The reviewer’s experiments with low-crossing knots suggest that it may be true even for positive links. The aforementioned work with Baader has confirmed the conjecture for tree-like plumbing links of generalized Hopf bands (any positive number of full twists).
An Appendix (joint with Feller) contains a proof that the absolute value of the signature of a link is a lower bound for the number of zeros of the Alexander polynomial lying on the unit circle. This fact was known in special cases but was plagued by a painful (recording) history. Some more explanation may be found in a paper of P. M. Gilmer and C. Livingston [Proc. Am. Math. Soc. 144, No. 12, 5407–5417 (2016; Zbl 1361.57010)], who have given an alternative proof. They also point out there is a minor oversight in the present paper (concerning a signature jump at \(-1\)), which can be easily fixed, though.

MSC:

57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
20F55 Reflection and Coxeter groups (group-theoretic aspects)

Citations:

Zbl 1361.57010

References:

[1] N. A’Campo: Sur la monodromie des singularités isolées d’hypersurfaces complexes , Invent. Math. 20 (1973), 147-169. · Zbl 0264.14002 · doi:10.1007/BF01404063
[2] N. A’Campo: Sur les valeurs propres de la transformation de Coxeter , Invent. Math. 33 (1976), 61-67. · Zbl 0406.20041 · doi:10.1007/BF01425505
[3] N. A’Campo: Real deformations and complex topology of plane curve singularities , Ann. Fac. Sci. Toulouse Math. (6) 8 (1999), 5-23. · Zbl 0962.32025 · doi:10.5802/afst.918
[4] N. A’Campo: Generic immersions of curves, knots, monodromy and Gordian number , Inst. Hautes Études Sci. Publ. Math. 88 (1998), 151-169. · Zbl 0960.57007 · doi:10.1007/BF02701769
[5] N. A’Campo: Planar trees, slalom curves and hyperbolic knots , Inst. Hautes Études Sci. Publ. Math. 88 (1998), 171-180. · Zbl 0960.57008 · doi:10.1007/BF02701770
[6] S. Baader and P. Dehornoy: Minor theory for surfaces and divides of maximal signature , http://arxiv.org/abs/1211.7348.
[7] S. Baader and P. Dehornoy: Trefoil plumbing , Proc. Amer. Math. Soc. 144 (2016), 387-397. · Zbl 1337.57009 · doi:10.1090/proc/12561
[8] \begingroup H.S.M. Coxeter: Discrete groups generated by reflections , Ann. of Math. (2) 35 (1934), 588-621. \endgroup · Zbl 0010.01101 · doi:10.2307/1968753
[9] H.S.M. Coxeter: The product of the generators of a finite group generated by reflections , Duke Math. J. 18 (1951), 765-782. · Zbl 0044.25603 · doi:10.1215/S0012-7094-51-01870-4
[10] P. Dehornoy: On the zeroes of the Alexander polynomial of a Lorenz knot , to appear in Ann. Inst. Fourier. · Zbl 1332.57006 · doi:10.5802/aif.2938
[11] P. Feller: The signature of positive braids is linearly bounded by their first Betti number , Internat. J. Math. 26 (2015), 1550081. · Zbl 1332.57008 · doi:10.1142/S0129167X15500810
[12] Y. Gerber: Positive tree-llike mapping classes , PhD Thesis, University of Basel (2006).
[13] E. Giroux and N. Goodman: On the stable equivalence of open books in three-manifolds , Geom. Topol. 10 (2006), 97-114. · Zbl 1100.57013 · doi:10.2140/gt.2006.10.97
[14] C.McA. Gordon, R.A. Litherland and K. Murasugi: Signatures of covering links , Canad. J. Math. 33 (1981), 381-394. · Zbl 0469.57004 · doi:10.4153/CJM-1981-032-3
[15] M. Hirasawa and K. Murasugi: Various stabilities of the Alexander polynomials of knots and links , http://arxiv.org/abs/1307.1578. · Zbl 1285.57003 · doi:10.4064/bc100-0-5
[16] M. Ishikawa: Plumbing constructions of connected divides and the Milnor fibers of plane curve singularities , Indag. Math. (N.S.) 13 (2002), 499-514. · Zbl 1036.57011 · doi:10.1016/S0019-3577(02)80029-5
[17] P.-V. Koseleff and D. Pecker: On Alexander-Conway polynomials of two-bridge links , J. Symbolic Comput. 68 (2015), 215-229. · Zbl 1305.57015 · doi:10.1016/j.jsc.2014.09.011
[18] L.H. Kauffman and L.R. Taylor: Signature of links , Trans. Amer. Math. Soc. 216 (1976), 351-365. · Zbl 0322.55003 · doi:10.2307/1997704
[19] J. Levine: Knot cobordism groups in codimension two , Comment. Math. Helv. 44 (1969), 229-244. · Zbl 0176.22101 · doi:10.1007/BF02564525
[20] L. Lewark: The Rasmussen invariant of arborescent and of mutant links , Master thesis, ETH Zürich (2009).
[21] L. Lyubich and K. Murasugi: On zeros of the Alexander polynomial of an alternating knot , Topology Appl. 159 (2012), 290-303. · Zbl 1251.57011 · doi:10.1016/j.topol.2011.09.035
[22] C.T. McMullen: Coxeter groups, Salem numbers and the Hilbert metric , Publ. Math. Inst. Hautes Études Sci. 95 (2002), 151-183. · Zbl 1148.20305 · doi:10.1007/s102400200001
[23] L. Rudolph: Quasipositive plumbing (constructions of quasipositive knots and links , V), Proc. Amer. Math. Soc. 126 (1998), 257-267. · Zbl 0888.57010 · doi:10.1090/S0002-9939-98-04407-4
[24] Y. Shinohara: On the signature of knots and links , Trans. Amer. Math. Soc. 156 (1971), 273-285. · Zbl 0218.55002 · doi:10.2307/1995612
[25] H. Smith: On systems of linear indeterminate equations and congruences , Phil. Trans. R. Soc. Lond. 151 (1861), 293-326.
[26] J.R. Stallings: Constructions of fibred knots and links ; in Algebraic and Geometric Topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2, Proc. Sympos. Pure Math. 32 , Amer. Math. Soc., Providence, RI, 1978, 55-60. · Zbl 0394.57007
[27] R. Steinberg: Finite reflection groups , Trans. Amer. Math. Soc. 91 (1959), 493-504. · Zbl 0092.13904 · doi:10.2307/1993261
[28] A. Stoimenow: Some applications of Tristram-Levine signatures and relation to Vassiliev invariants , Adv. Math. 194 (2005), 463-484. · Zbl 1117.57015 · doi:10.1016/j.aim.2004.07.003
[29] A. Stoimenow: Hoste’s conjecture and roots of link polynomials , to appear in Ann. Combinatorics. · Zbl 1397.57019
[30] A.G. Tristram: Some cobordism invariants for links , Proc. Cambridge Philos. Soc. 66 (1969), 251-264. \endthebibliography* · doi:10.1017/S0305004100044947
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.