×

Memory and the infrared. (English) Zbl 1383.83056

Summary: Memory effects in scattering processes are described in terms of the asymptotic retarded fields. These fields are completely determined by the scattering data and the zero mode part is set by the soft photon theorem. The dressed asymptotic states defining an infrared finite S-matrix for charged particles can be defined as quantum coherent states using the corpuscular resolution of the asymptotic retarded fields. Imposing that the net radiated energy in the scattering is zero leads to the new set of conservation laws for the scattering S-matrix which are equivalent to the decoupling of the soft modes. The actual observability of the memory requires a non-vanishing radiated energy and could be described using the infrared part of the differential cross section that only depends on the scattering data and the radiated energy. This is the IR safe cross section with any number of emitted photons carrying total energy equal to the energy involved in the actual memory detection.

MSC:

83C57 Black holes
81U05 \(2\)-body potential quantum scattering theory
74D10 Nonlinear constitutive equations for materials with memory

References:

[1] Y.B. Zel’dovich and A.G. Polnarev, Radiation of gravitational waves by a cluster of superdense stars, Sov. Astron.18 (1974) 17.
[2] D. Christodoulou, Nonlinear nature of gravitation and gravitational wave experiments, Phys. Rev. Lett.67 (1991) 1486 [INSPIRE]. · Zbl 0990.83504 · doi:10.1103/PhysRevLett.67.1486
[3] K.S. Thorne, Gravitational-wave bursts with memory: The Christodoulou effect, Phys. Rev.D 45 (1992) 520 [INSPIRE].
[4] D. Garfinkle, S. Hollands, A. Ishibashi, A. Tolish and R.M. Wald, The Memory Effect for Particle Scattering in Even Spacetime Dimensions, Class. Quant. Grav.34 (2017) 145015 [arXiv:1702.00095] [INSPIRE]. · Zbl 1373.83031 · doi:10.1088/1361-6382/aa777b
[5] L. Bieri and D. Garfinkle, An electromagnetic analogue of gravitational wave memory, Class. Quant. Grav.30 (2013) 195009 [arXiv:1307.5098] [INSPIRE]. · Zbl 1277.83034 · doi:10.1088/0264-9381/30/19/195009
[6] A. Strominger and A. Zhiboedov, Gravitational memory, BMS supertranslations and soft theorems, JHEP01 (2016) 086 [arXiv:1411.5745] [INSPIRE]. · Zbl 1388.83072 · doi:10.1007/JHEP01(2016)086
[7] T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinberg’s soft graviton theorem, JHEP05 (2015) 151 [arXiv:1401.7026] [INSPIRE]. · Zbl 1388.83261 · doi:10.1007/JHEP05(2015)151
[8] A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [INSPIRE]. · Zbl 1408.83003
[9] S. Weinberg, Infrared photons and gravitons, Phys. Rev.140 (1965) B516 [INSPIRE]. · doi:10.1103/PhysRev.140.B516
[10] F.E. Low, Scattering of light of very low frequency by systems of spin 1/2, Phys. Rev.96 (1954) 1428 [INSPIRE]. · Zbl 0056.44408 · doi:10.1103/PhysRev.96.1428
[11] F.E. Low, Bremsstrahlung of very low-energy quanta in elementary particle collisions, Phys. Rev.110 (1958) 974 [INSPIRE]. · Zbl 0082.42802 · doi:10.1103/PhysRev.110.974
[12] T. He, P. Mitra, A.P. Porfyriadis and A. Strominger, New symmetries of massless QED, JHEP10 (2014) 112 [arXiv:1407.3789] [INSPIRE]. · doi:10.1007/JHEP10(2014)112
[13] D. Kapec, M. Perry, A.-M. Raclariu and A. Strominger, Infrared Divergences in QED, Revisited, arXiv:1705.04311 [INSPIRE].
[14] D.R. Yennie, S.C. Frautschi and H. Suura, The infrared divergence phenomena and high-energy processes, Annals Phys.13 (1961) 379 [INSPIRE]. · doi:10.1016/0003-4916(61)90151-8
[15] P.P. Kulish and L.D. Faddeev, Asymptotic conditions and infrared divergences in quantum electrodynamics, Theor. Math. Phys.4 (1970) 745 [Teor. Mat. Fiz.4 (1970) 153] [INSPIRE]. · Zbl 0197.26201
[16] J. Ware, R. Saotome and R. Akhoury, Construction of an asymptotic S matrix for perturbative quantum gravity, JHEP10 (2013) 159 [arXiv:1308.6285] [INSPIRE]. · doi:10.1007/JHEP10(2013)159
[17] M. Mirbabayi and M. Porrati, Dressed Hard States and Black Hole Soft Hair, Phys. Rev. Lett.117 (2016) 211301 [arXiv:1607.03120] [INSPIRE]. · doi:10.1103/PhysRevLett.117.211301
[18] B. Gabai and A. Sever, Large gauge symmetries and asymptotic states in QED, JHEP12 (2016) 095 [arXiv:1607.08599] [INSPIRE]. · Zbl 1390.83141 · doi:10.1007/JHEP12(2016)095
[19] C. Gomez and M. Panchenko, Asymptotic dynamics, large gauge transformations and infrared symmetries, arXiv:1608.05630 [INSPIRE].
[20] J.A. Wheeler and R.P. Feynman, Interaction with the absorber as the mechanism of radiation, Rev. Mod. Phys.17 (1945) 157 [INSPIRE]. · doi:10.1103/RevModPhys.17.157
[21] J.A. Wheeler and R.P. Feynman, Classical electrodynamics in terms of direct interparticle action, Rev. Mod. Phys.21 (1949) 425 [INSPIRE]. · Zbl 0034.27801 · doi:10.1103/RevModPhys.21.425
[22] M. Campiglia, L. Coito and S. Mizera, Can scalars have asymptotic symmetries?, arXiv:1703.07885 [INSPIRE].
[23] D. Kapec, M. Pate and A. Strominger, New Symmetries of QED, arXiv:1506.02906 [INSPIRE]. · Zbl 1383.81351
[24] G. Dvali, C. Gomez, L. Gruending and T. Rug, Towards a Quantum Theory of Solitons, Nucl. Phys.B 901 (2015) 338 [arXiv:1508.03074] [INSPIRE]. · Zbl 1332.81087 · doi:10.1016/j.nuclphysb.2015.10.017
[25] G. Dvali, C. Gomez and S. Zell, Quantum Break-Time of de Sitter, JCAP06 (2017) 028 [arXiv:1701.08776] [INSPIRE]. · Zbl 1515.83220 · doi:10.1088/1475-7516/2017/06/028
[26] M. Panchenko, The infrared triangle in the context of IR safe S matrices, to appear.
[27] A. Addazi, M. Bianchi and G. Veneziano, Glimpses of black hole formation/evaporation in highly inelastic, ultra-planckian string collisions, JHEP02 (2017) 111 [arXiv:1611.03643] [INSPIRE]. · Zbl 1377.83034 · doi:10.1007/JHEP02(2017)111
[28] S. Pasterski, A. Strominger and A. Zhiboedov, New gravitational memories, JHEP12 (2016) 053 [arXiv:1502.06120] [INSPIRE]. · Zbl 1390.83024 · doi:10.1007/JHEP12(2016)053
[29] S.W. Hawking, M.J. Perry and A. Strominger, Soft Hair on Black Holes, Phys. Rev. Lett.116 (2016) 231301 [arXiv:1601.00921] [INSPIRE]. · doi:10.1103/PhysRevLett.116.231301
[30] S.W. Hawking, M.J. Perry and A. Strominger, Superrotation charge and supertranslation hair on black holes, JHEP05 (2017) 161 [arXiv:1611.09175] [INSPIRE]. · Zbl 1380.83143 · doi:10.1007/JHEP05(2017)161
[31] G. Dvali and C. Gomez, Black hole’s 1/N hair, Phys. Lett.B 719 (2013) 419 [arXiv:1203.6575] [INSPIRE]. · Zbl 1370.83046 · doi:10.1016/j.physletb.2013.01.020
[32] A. Averin, G. Dvali, C. Gomez and D. Lüst, Goldstone origin of black hole hair from supertranslations and criticality, Mod. Phys. Lett.A 31 (2016) 1630045 [arXiv:1606.06260] [INSPIRE]. · Zbl 1353.83003 · doi:10.1142/S0217732316300457
[33] G. Dvali, C. Gomez, R.S. Isermann, D. Lüst and S. Stieberger, Black hole formation and classicalization in ultra-Planckian 2 → N scattering, Nucl. Phys.B 893 (2015) 187 [arXiv:1409.7405] [INSPIRE]. · Zbl 1348.83047 · doi:10.1016/j.nuclphysb.2015.02.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.