×

A numerical investigation of acceleration-skewed oscillatory flows. (English) Zbl 1383.76381

Summary: Numerical simulations of wall-bounded acceleration-skewed oscillatory flows are here presented. The relevance of this type of boundary layer arises in connection with coastal hydrodynamics and sediment transport, as it is generated at the bottom of sea waves in shallow water. Because of the acceleration skewness, the bed shear stress during the onshore half-cycle is larger than in the offshore half-cycle. The asymmetry in the bed shear stress increases with increasing acceleration skewness, while an increase of the Reynolds number from the laminar regime causes the asymmetry first to decrease and then increase. Low- and high-speed streaks of fluid elongated in the streamwise direction emerge near the wall, shortly after the beginning of each half-cycle, at a phase that depends on the flow parameters. Such flow structures strengthen during the first part of the accelerating phase, without causing a significant deviation of the streamwise wall shear stress from the laminar values. Before the occurrence of the peak of the free stream velocity, the low-speed streaks break down into small turbulent structures causing a large increase in wall shear stress. The ratio of the root-mean-square (r.m.s.) of the fluctuations to the mean value (relative intensity) of the wall shear stress is approximately 0.4 throughout a relatively wide interval of the flow cycle that begins when breaking down of the streaks has occurred in the entire fluid domain. The acceleration skewness and the Reynolds number determine the phase at which this time interval begins. Both the skewness and the flatness coefficients of the streamwise wall shear stress are large when elongated streaks are present, while values of approximately 1.1 and 5.4 respectively occur just after breaking has occurred. The trend of both the relative intensity and the flatness of the spanwise wall shear stress are qualitatively similar to those of the wall shear in the streamwise direction. As a result of the acceleration skewness, the period-averaged Reynolds stress does not vanish. Consequently, an offshore directed steady streaming is generated which persists into the irrotational region.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76F40 Turbulent boundary layers
Full Text: DOI

References:

[1] Van Der A, D. A.; O’Donoghue, T.; Davies, A.; Ribberink, J. S., Experimental study of the turbulent boundary layer in acceleration-skewed oscillatory flow, J. Fluid Mech., 684, 251-283, (2011) · Zbl 1241.76059 · doi:10.1017/jfm.2011.300
[2] Van Der A, D. A.; O’Donoghue, T.; Davies, A.; Ribberink, J. S., Measurements of sheet flow transport in acceleration-skewed oscillatory flow and comparison with practical formulations, Coast. Engng, 57, 331-342, (2010) · doi:10.1016/j.coastaleng.2009.11.006
[3] Abreu, T.; Michallet, H.; Silva, P.; Sancho, F.; Van Der A, D. A.; Ruessink, B., Bed shear stress under skewed and asymmetric oscillatory flows, Coast. Engng, 73, 1-10, (2013) · doi:10.1016/j.coastaleng.2012.10.001
[4] Alfredsson, P. H.; Johansson, A., The fluctuating wall-shear stress and the velocity field in the viscous sublayer, Phys. Fluids, 32, 5, 1026-1033, (1988) · doi:10.1063/1.866783
[5] Blondeaux, P.; Vittori, G.; Lalli, F.; Pesarino, V., Steady streaming and sediment transport at the bottom of sea waves, J. Fluid Mech., 697, 115-149, (2012) · Zbl 1250.76032 · doi:10.1017/jfm.2012.50
[6] Calantoni, J.; Puleo, J., Role of pressure gradient in sheet flow of coarse sediments under sawtooth waves, J. Geophys. Res. Oceans, 111, C01010, (2006) · doi:10.1029/2005JC002875
[7] Carstensen, S.; Sumer, B. M.; Fredsøe, J., Coherent structures in wave boundary layers. Part 1. Oscillatory motion, J. Fluid Mech., 646, 169-206, (2010) · Zbl 1189.76017 · doi:10.1017/S0022112009992825
[8] Cavallaro, L.; Scandura, P.; Foti, E., Turbulence-induced steady streaming in an oscillating boundary layer, Coast. Engng, 58, 290-304, (2011) · doi:10.1016/j.coastaleng.2010.10.001
[9] Corino, E. R.; Brodkey, R. S., A visual investigation of the wall region in turbulent flow, J. Fluid Mech., 37, 1-39, (1969) · doi:10.1017/S0022112069000395
[10] Costamagna, P.; Vittori, G.; Blondeaux, P., Coherent structures in oscillatory boundary layers, J. Fluid Mech., 474, 1-33, (2003) · Zbl 1065.76053 · doi:10.1017/S0022112002002665
[11] Dibajnia, M.; Watanabe, A., Transport rate under irregular sheet flow conditions, Coast. Engng, 35, 167-183, (1998) · doi:10.1016/S0378-3839(98)00034-9
[12] Dong, L.; Sato, S.; Liu, H., A sheetflow sediment transport model for skewed-asymmetric waves combined with strong opposite currents, Coast. Engng, 71, 87-101, (2013) · doi:10.1016/j.coastaleng.2012.08.004
[13] Drake, T.; Calantoni, J., Discrete particle model for sheet flow sediment transport in the nearshore, J. Geophys. Res. Oceans, 106, C9, 19859-19868, (2001) · doi:10.1029/2000JC000611
[14] Durst, F.; Jovanovic, J.; Sender, J., LDA measurments in the near-wall region of a turbulent pipe flow, J. Fluid Mech., 295, 305-335, (1995) · doi:10.1017/S0022112095001984
[15] Elgar, S.; Guza, R.-T.; Freilich, M., Eulerian measurements of horizontal accelerations in shoaling gravity waves, J. Geophys. Res., 93, 9261-9269, (1988) · doi:10.1029/JC093iC08p09261
[16] Fishler, L. S.; Brodkey, R. S., Transition, turbulence and oscillating flow in a pipe, Exp. Fluids, 11, 388-398, (1991) · doi:10.1007/BF00211793
[17] Fuhrman, D. R.; Fredsøe, J.; Sumer, B., Bed slope effects on turbulent wave boundary layers: 2. Comparison with skewness, asymmetry, and other effects, J. Geophys. Res., 114, 19, (2009)
[18] Hamilton, J.; Kim, J.; Waleffe, F., Regeneration mechanisms of near-wall turbulence structures, J. Fluid Mech., 287, 317-348, (1995) · Zbl 0867.76032 · doi:10.1017/S0022112095000978
[19] Holmedal, L.; Myrhaugh, D., Boundary layer flow and net sediment transport beneath asymmetrical waves, Coast. Engng, 26, 252-268, (2006)
[20] Hsu, T.; Hanes, D., Effects of wave shape on sheet flow sediment transport, J. Geophys. Res. Oceans, 109, C05025, 15, (2004)
[21] Jensen, B. L.; Sumer, B. M.; Fredsøe, J., Turbulent oscillatory boundary layers at high Reynolds numbers, J. Fluid Mech., 206, 265-297, (1989) · doi:10.1017/S0022112089002302
[22] Jeong, J.; Hussain, F., On the identification of a vortex, J. Fluid Mech., 285, 69-74, (1995) · Zbl 0847.76007 · doi:10.1017/S0022112095000462
[23] Johnson, N., Kotz, S. & Balakrishnan, N.1995Continuous Univariate Distributions, vol. 2. Wiley. · Zbl 0821.62001
[24] Kim, J.; Moin, P., Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. Phys., 59, 308-323, (1985) · Zbl 0582.76038 · doi:10.1016/0021-9991(85)90148-2
[25] King, D.1990 Studies in oscillatory flow bed load sediment transport. PhD thesis, University of California, San Diego.
[26] Kline, S. J.; Reynolds, W. C.; Schraub, F. A.; Runstadler, P. W., The structure of turbulent boundary layer, J. Fluid Mech., 30, 741-773, (1967) · Zbl 1461.76274 · doi:10.1017/S0022112067001740
[27] Madsen, O.1974Stability of a sand bed under breaking waves. In Proc. 14th Conf. on Coastal Engineering, pp. 776-794. ASCE.
[28] Moin, P.; Mahesh, K., Direct numerical simulation: a tool in turbulence research, Annu. Rev. Fluid Mech., 30, 539-578, (1998) · Zbl 1398.76073 · doi:10.1146/annurev.fluid.30.1.539
[29] Nielsen, P.; Callaghan, D., Shear stress and sediment transport calculations for sheet flow under waves, Coast. Engng, 47, 347-354, (2003) · doi:10.1016/S0378-3839(02)00141-2
[30] Obi, S.; Inoue, K.; Furukawa, T.; Masuda, S., Experimental study on the statistics of wall shear stress in turbulent channel flow, Intl J. Heat Fluid Flow, 17, 187-192, (1996) · doi:10.1016/0142-727X(96)00041-0
[31] O’Donoghue, T.; Wright, S., Flow tunnel measurements of velocities and sand flux in oscillatory sheet flow for well-sorted and graded sands, Coast. Engng, 51, 1163-1184, (2004) · doi:10.1016/j.coastaleng.2004.08.001
[32] Ozdemir, C. E.; Hsu, T. J.; Balachandar, S., Direct numerical simulations of transition and turbulence in smooth-walled Stokes boundary layer, Phys. Fluids, 26, 25, (2014) · doi:10.1063/1.4871020
[33] Pedocchi, F.; Cantero, M.; Garcia, M., Turbulent kinetic energy balance of an oscillatory boundary layer in the transition to the fully turbulent regime, J. Turbul., 12, 32, 1-27, (2011) · Zbl 1273.76154 · doi:10.1080/14685248.2011.587427
[34] Pope, S. B., Turbulent Flows, (2000), Cambridge University Press · Zbl 0966.76002 · doi:10.1017/CBO9780511840531
[35] Ribberink, J.; Al-Salem, A., Sheet flow and suspension of sand in oscillatory boundary layers, Coast. Engng, 25, 205-225, (1995) · doi:10.1016/0378-3839(95)00003-T
[36] Robinson, S. K., Coherent motions in the turbulent boundary layer, Annu. Rev. Fluid Mech., 23, 601-639, (1991) · doi:10.1146/annurev.fl.23.010191.003125
[37] Salon, S.; Armenio, V.; Crise, A., A numerical investigation of the Stokes boundary layer in the turbulent regime, J. Fluid Mech., 570, 253-296, (2007) · Zbl 1120.76026 · doi:10.1017/S0022112006003053
[38] Scandura, P., Steady streaming in a turbulent oscillating boundary layer, J. Fluid Mech., 571, 265-280, (2007) · Zbl 1108.76032 · doi:10.1017/S0022112006002965
[39] Scandura, P., Two-dimensional vortex structures in the bottom boundary layer of progressive and solitary waves, J. Fluid Mech., 728, 340-361, (2013) · Zbl 1291.76113 · doi:10.1017/jfm.2013.274
[40] Scandura, P.; Foti, E., Measurements of wave-induced steady currents outside the surf zone, J. Hydraul. Res., 49, S1, 64-71, (2011) · doi:10.1080/00221686.2011.591046
[41] Scandura, P.; Foti, E.; Faraci, C., Mass transport under standing waves over a sloping beach, J. Fluid Mech., 701, 460-472, (2012) · Zbl 1248.76021 · doi:10.1017/jfm.2012.181
[42] Schoppa, W.; Hussain, F., Coherent structures generation in the near-wall turbulence, J. Fluid Mech., 453, 57-108, (2002) · Zbl 1141.76408 · doi:10.1017/S002211200100667X
[43] Silva, P.; Abreu, T.; Van Der A, D. A.; Sancho, F.; Ruessink, B.; Van Der Werf, J.; Ribberink, J. S., Sediment transport in nonlinear skewed oscillatory flows: Transkew experiments, J. Hydraul. Res., 49, 72-80, (2011) · doi:10.1080/00221686.2011.592681
[44] Trowbridge, J.; Madsen, O., Turbulent wave boundary layer 2: second order theory and mass transport, J. Geophys. Res. Oceans, 89, C5, 7999-8007, (1984) · doi:10.1029/JC089iC05p07999
[45] Vittori, G.; Verzicco, R., Direct simulation of transition in an oscillatory boundary layer, J. Fluid Mech., 371, 207-232, (1998) · Zbl 0918.76015 · doi:10.1017/S002211209800216X
[46] Watanabe, A. & Sato, S.2004A sheet-flow transport rate formula for asymmetric forward-leaning waves and currents. In Proc. 19th Coastal Engng Conf., pp. 1703-1714. ASCE.
[47] Yevjevich, V., Probability and Statistics in Hydrology, (1982), Water Resources Publications
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.