×

Two-dimensional vortex structures in the bottom boundary layer of progressive and solitary waves. (English) Zbl 1291.76113

Summary: The two-dimensional vortices characterizing the bottom boundary layer of both progressive and solitary waves, recently discovered by experimental flow visualizations and referred to as vortex tubes, are studied by numerical solution of the governing equations. In the case of progressive waves, the Reynolds numbers investigated belong to the subcritical range, according to Floquet linear stability theory. In such a range the periodic generation of strictly two-dimensional vortex structures is not a self-sustaining phenomenon, being the presence of appropriate ambient disturbances necessary to excite certain modes through a receptivity mechanism. In a physical experiment such disturbances may arise from several coexisting sources, among which the most likely is roughness. Therefore, in the present numerical simulations, wall imperfections of small amplitude are introduced as a source of disturbances for both types of wave, but from a macroscopic point of view the wall can be regarded as flat. The simulations show that even wall imperfections of small amplitude may cause flow instability and lead to the appearance of vortex tubes. These vortices, in turn, interact with a vortex layer adjacent to the wall and characterized by vorticity opposite to that of the vortex tubes. In a first stage such interaction gives rise to corrugation of the vortex layer and this affects the spatial distribution of the wall shear stress. In a second stage the vortex layer rolls up and pairs of counter-rotating vortices are generated, which leave the bottom because of the self-induced velocity.

MSC:

76D17 Viscous vortex flows
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
76D33 Waves for incompressible viscous fluids
76E99 Hydrodynamic stability
Full Text: DOI

References:

[1] DOI: 10.1017/S0022112075001826 · doi:10.1017/S0022112075001826
[2] DOI: 10.1017/jfm.2011.320 · Zbl 1241.76285 · doi:10.1017/jfm.2011.320
[3] DOI: 10.1063/1.3422004 · Zbl 1190.76082 · doi:10.1063/1.3422004
[4] DOI: 10.1017/S0022112008003893 · Zbl 1155.76033 · doi:10.1017/S0022112008003893
[5] DOI: 10.1017/S0022112006004253 · Zbl 1133.76310 · doi:10.1017/S0022112006004253
[6] DOI: 10.1017/S0022112004001806 · Zbl 1065.76063 · doi:10.1017/S0022112004001806
[7] DOI: 10.1017/S0022112009992825 · Zbl 1189.76017 · doi:10.1017/S0022112009992825
[8] J. Fluid Mech. 192 pp 511– (1987)
[9] DOI: 10.1063/1.1290391 · Zbl 1184.76069 · doi:10.1063/1.1290391
[10] DOI: 10.1063/1.1762301 · doi:10.1063/1.1762301
[11] DOI: 10.1017/S0022112094000601 · Zbl 0822.76027 · doi:10.1017/S0022112094000601
[12] Phys. Fluids Suppl. II 12 pp 233– (1969)
[13] DOI: 10.1016/0021-9991(66)90015-5 · Zbl 0147.44202 · doi:10.1016/0021-9991(66)90015-5
[14] DOI: 10.1017/S0022112074000929 · Zbl 0298.76024 · doi:10.1017/S0022112074000929
[15] Lincei – Rend. Sc. Fis. Mat. e Nat. 67 pp 408– (1979)
[16] DOI: 10.1017/S0022112076000177 · doi:10.1017/S0022112076000177
[17] Turbulent Shear Flows vol. 3 pp 18– (1982)
[18] DOI: 10.1017/jfm.2012.341 · Zbl 1275.76122 · doi:10.1017/jfm.2012.341
[19] DOI: 10.1098/rspa.1978.0037 · Zbl 0373.76045 · doi:10.1098/rspa.1978.0037
[20] J. Fluid Mech. 464 pp 393– (2002)
[21] Hydrodynamic Stability (2004)
[22] DOI: 10.1017/S0022112091002112 · doi:10.1017/S0022112091002112
[23] DOI: 10.1017/S0022112009992837 · Zbl 1189.76044 · doi:10.1017/S0022112009992837
[24] J. Fluid Dyn. 1 pp 121– (1966)
[25] DOI: 10.1017/S0022112000008430 · Zbl 0998.76500 · doi:10.1017/S0022112000008430
[26] DOI: 10.1016/S0997-7546(03)00037-2 · Zbl 1056.76030 · doi:10.1016/S0997-7546(03)00037-2
[27] DOI: 10.1299/jsme1958.25.365 · doi:10.1299/jsme1958.25.365
[28] DOI: 10.2514/3.5337 · doi:10.2514/3.5337
[29] DOI: 10.1007/978-1-4612-4724-1 · doi:10.1007/978-1-4612-4724-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.