×

Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. (English) Zbl 1383.68034

Summary: A. W. Harrow et al. [“Quantum algorithm for linear systems of equations”, Phys. Rev. Lett. 103, No. 13, Article ID 150502, 4 p. (2009; doi:10.1103/PhysRevLett.103.150502)] showed that for a suitably specified \(N \times N\) matrix \(A\) and an \(N\)-dimensional vector \(\vec{b}\), there is a quantum algorithm that outputs a quantum state proportional to the solution of the linear system of equations \(A\vec{x} = \vec{b}\). If \(A\) is sparse and well-conditioned, their algorithm runs in time \(\mathrm{poly}(\log N, 1/\epsilon)\), where \(\epsilon\) is the desired precision in the output state. We improve this to an algorithm whose running time is polynomial in \(\log(1/\epsilon)\), exponentially improving the dependence on precision while keeping essentially the same dependence on other parameters. Our algorithm is based on a general technique for implementing any operator with a suitable Fourier or Chebyshev series representation. This allows us to bypass the quantum phase estimation algorithm, whose dependence on \(\epsilon\) is prohibitive.

MSC:

68Q12 Quantum algorithms and complexity in the theory of computing
65F05 Direct numerical methods for linear systems and matrix inversion

References:

[1] S. Aaronson, {\it Read the fine print}, Nat. Phys., 11 (2015), pp. 291-293.
[2] A. Ambainis, {\it Variable time amplitude amplification and quantum algorithms for linear algebra problems}, in Proceedings of the 29th International Symposium on Theoretical Aspects of Computer Science, 2012, pp. 636-647. · Zbl 1245.68084
[3] M. Abramowitz and I. A. Stegun, {\it Handbook of Mathematical Functions}, National Bureau of Standards, Washington, D.C., 1964. · Zbl 0171.38503
[4] D. W. Berry and A. M. Childs, {\it Black-box Hamiltonian simulation and unitary implementation}, Quantum Inf. Comput., 12 (2012), pp. 29-62. · Zbl 1268.81045
[5] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, {\it Exponential improvement in precision for simulating sparse Hamiltonians}, in Proceedings of the 46th ACM Symposium on Theory of Computing, 2014, pp. 283-292. · Zbl 1315.68133
[6] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, {\it Simulating Hamiltonian dynamics with a truncated Taylor series}, Phys. Rev. Lett., 114 (2015), 090502.
[7] D. W. Berry, A. M. Childs, and R. Kothari, {\it Hamiltonian simulation with nearly optimal dependence on all parameters}, in Proceedings of the 56th Symposium on Foundations of Computer Science, 2015.
[8] G. Brassard, P. Høyer, M. Mosca, and A. Tapp, {\it Quantum amplitude amplification and estimation}, in Quantum Computation and Information, Contemp. Math. 305, AMS, Providence, RI, 2002, pp. 53-74. · Zbl 1063.81024
[9] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, {\it Quantum algorithms revisited}, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454 (1998), pp. 339-354. · Zbl 0915.68050
[10] E. W. Cheney, {\it Introduction to Approximation Theory}, AMS Chelsea Publishing, Providence, RI, 1982. · Zbl 0535.41001
[11] A. M. Childs, {\it Quantum algorithms: Equation solving by simulation}, Nat. Phys., 5 (2009), 861.
[12] A. M. Childs, {\it On the relationship between continuous- and discrete-time quantum walk}, Comm. Math. Phys., 294 (2010), pp. 581-603. · Zbl 1207.81029
[13] A. N. Chowdhury and R. D. Somma, {\it Quantum algorithms for Gibbs sampling and hitting-time estimation}, Quantum Inf. Comput., 17 (2017), pp. 41-64.
[14] A. M. Childs and N. Wiebe, {\it Hamiltonian simulation using linear combinations of unitary operations}, Quantum Inf. Comput., 12 (2012), pp. 901-924. · Zbl 1263.81112
[15] B. Fefferman and C. Lin, {\it Quantum Merlin Arthur with Exponentially Small Gap}, preprint, , 2016.
[16] L. K. Grover, {\it A fast quantum mechanical algorithm for database search}, in Proceedings of the 28th ACM Symposium on Theory of Computing, 1996, pp. 212-219. · Zbl 0922.68044
[17] A. W. Harrow, {\it Review of Quantum Algorithms for Systems of Linear Equations}, preprint, , 2015.
[18] A. W. Harrow, A. Hassidim, and S. Lloyd, {\it Quantum algorithm for linear systems of equations}, Phys. Rev. Lett., 103 (2009), 150502.
[19] J. K. Hunter and B. Nachtergale, {\it Applied Analysis}, World Scientific, River Edge, NJ, 2001. · Zbl 0981.46002
[20] R. Kothari, {\it Efficient Algorithms in Quantum Query Complexity}, Ph.D. thesis, University of Waterloo, Waterloo, ON, Canada, 2014.
[21] A. Montanaro and S. Pallister, {\it Quantum Algorithms and the Finite Element Method}, preprint, , 2015.
[22] V. V. Shende, S. S. Bullock, and I. L. Markov, {\it Synthesis of quantum-logic circuits}, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 25 (2006), pp. 1000-1010.
[23] R. D. Somma, G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme, {\it Simulating physical phenomena by quantum networks}, Phys. Rev. A, 65 (2002), 042323. · Zbl 0998.81011
[24] S. Sachdeva and N. K. Vishnoi, {\it Faster algorithms via approximation theory}, Found. Trends Theor. Comput. Sci., 9 (2013), pp. 125-210. · Zbl 1333.68296
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.