×

An improved method for quantum matrix multiplication. (English) Zbl 1542.68068

Summary: Following the celebrated quantum algorithm for solving linear equations (so-called HHL algorithm), A. M. Childs et al. [SIAM J. Comput. 46, No. 6, 1920–1950 (2017; Zbl 1383.68034)] provided an approach to solve a linear system of equations with exponentially improved dependence on precision. In this note, we aim to complement such a result for applying a matrix to some quantum state, based upon their Chebyshev polynomial approach. A few examples that motivate this application are included, and we further discuss an application of this improved matrix application algorithm explicitly with an efficient quantum procedure.

MSC:

68Q12 Quantum algorithms and complexity in the theory of computing
65F05 Direct numerical methods for linear systems and matrix inversion
65Y10 Numerical algorithms for specific classes of architectures
81P68 Quantum computation

Citations:

Zbl 1383.68034

References:

[1] Harrow, Aram W.; Hassidim, Avinatan; Lloyd, Seth, Quantum algorithm for linear systems of equations, Phys. Rev. Lett., 103, 15, 150502 (2009) · doi:10.1103/PhysRevLett.103.150502
[2] Childs, Andrew M.; Kothari, Robin; Somma, Roland Do D., Quantum algorithm for systems of linear equations with exponentially improved dependence on precision, SIAM J. Comput., 46, 6, 1920-1950 (2017) · Zbl 1383.68034 · doi:10.1137/16M1087072
[3] David Clader, B.; Jacobs, Bryan C.; Sprouse, Chad R., Preconditioned quantum linear system algorithm, Phys. Rev. Lett., 110, 25, 250504 (2013) · doi:10.1103/PhysRevLett.110.250504
[4] Wiebe, Nathan; Braun, Daniel; Lloyd, Seth, Quantum algorithm for data fitting, Phys. Rev. Lett., 109, 5, 050505 (2012) · doi:10.1103/PhysRevLett.109.050505
[5] Nhat, A., Nghiem., Tzu-Chieh, W.: Quantum algorithm for estimating eigenvalue. arXiv preprint arXiv:2211.06179, (2022) · Zbl 1542.68068
[6] Dominic, W., Berry., Andrew, M., Childs., Robin, K.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th annual symposium on foundations of computer science, pages 792-809. IEEE, (2015)
[7] Berry, Dominic W.; Ahokas, Graeme; Cleve, Richard; Sanders, Barry C., Efficient quantum algorithms for simulating sparse hamiltonians, Commun. Math. Phys., 270, 2, 359-371 (2007) · Zbl 1115.81011 · doi:10.1007/s00220-006-0150-x
[8] Berry, Dominic W.; Childs, Andrew M., Black-box hamiltonian simulation and unitary implementation, Quantum Inf. Comput., 12, 29-62 (2009) · Zbl 1268.81045
[9] Brassard, Gilles; Hoyer, Peter; Mosca, Michele; Tapp, Alain, Quantum amplitude amplification and estimation, Contemp. Math., 305, 53-74 (2002) · Zbl 1063.81024 · doi:10.1090/conm/305/05215
[10] Rebentrost, Patrick; Mohseni, Masoud; Lloyd, Seth, Quantum support vector machine for big data classification, Phys. Rev. Lett., 113, 13 (2014) · doi:10.1103/PhysRevLett.113.130503
[11] Knill, E.; Laflamme, R., Power of one bit of quantum information, Phys. Rev. Lett., 81, 5672-5675 (1998) · doi:10.1103/PhysRevLett.81.5672
[12] Peter, W., Shor, Stephen, P. J.: Estimating jones polynomials is a complete problem for one clean qubit. 8(8):681-714, 2008 · Zbl 1236.81069
[13] Michael, A., Nielsen., Isaac, C.: Quantum computation and quantum information, (2002) · Zbl 1049.81015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.