×

Aims and scope of the special issue “Quantum foundations: informational perspective”. (English) Zbl 1382.81004

From the text: During the past 30 years, the field of quantum information theory has produced a variety of novel information technologies whose full potential is as yet unknown. This quantum information revolution has also renewed the interest in the foundations of quantum theory, to the extent that fundamental concepts are now reconsidered in terms of a new information-theoretical perspective (see, e.g., [G. M. D’Ariano and the first author, Philos. Trans. R. Soc. Lond., A, Math. Phys. Eng. Sci. 374, No. 2068, Article ID 20150244, 5 p. (2016; Zbl 1353.94006); B. Coecke (ed.) and the first author (ed.), Int. J. Quantum Inf. 14, No. 4, Article ID 1602001, 4 p. (2016; Zbl 1356.00031); G. Chiribella (ed.) and R. W. Spekkens (ed.), Quantum theory: informational foundations and foils. Dordrecht: Springer (2016; Zbl 1328.81012)]). Indeed, the crucial strengthening of the quantum-informational aspect of quantum mechanics has gone beyond merely stimulating traditional foundational studies, prompting a deep and thoroughgoing reconsideration of quantum foundations. In particular, there is now a flourishing research effort that studies quantum foundations from a purely informational perspective. This issue is composed of contributions by leading researchers in quantum foundations, especially from informational and probabilistic perspectives, and it presents their expert viewpoints on a number of foundational problems.

MSC:

81-06 Proceedings, conferences, collections, etc. pertaining to quantum theory
00B15 Collections of articles of miscellaneous specific interest
81P05 General and philosophical questions in quantum theory
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
00A79 Physics
Full Text: DOI

References:

[1] Khrennikov, A.: Quantum Theory: Reconsideration of Foundations. Växjö Univ. Press, Växjö (2002) · Zbl 1280.81009
[2] Adenier, G., Fuchs, C., Khrennikov, A. (eds.): Foundations of Probability and Physics-4, AIP Conference Proceedings, vol. 889. American Institute of Physics, Melville, NY (2007) · Zbl 1115.81004
[3] Khrennikov, A., Weihs, G.: Preface of the special issue Quantum foundations: theory and experiment. Found. Phys. 42(6), 721-724 (2012). doi:10.1007/s10701-012-9644-x · doi:10.1007/s10701-012-9644-x
[4] Bengtsson, I., Khrennikov, A.: Preface. Found. Phys. 41(3), 281 (2011). doi:10.1007/s10701-010-9524-1 · doi:10.1007/s10701-010-9524-1
[5] D’Ariano, G.M., Jaeger, G., Khrennikov, A., Plotnitsky, A.: Preface of the special issue Quantum theory: advances and problems. Physica Scripta T163, 010301 (2014). doi:10.1088/0031-8949/2014/T163/010301 · doi:10.1088/0031-8949/2014/T163/010301
[6] Khrennikov, A., de Raedt, H., Plotnitsky, A., Polyakov, S.: Preface of the special issue Probing the limits of quantum mechanics: theory and experiment, vol. 1. Found. Phys. 45(7), 707-710 (2015). doi:10.1007/s10701-015-9911-8 · Zbl 1321.00106 · doi:10.1007/s10701-015-9911-8
[7] Khrennikov, A., de Raedt, H., Plotnitsky, A., Polyakov, S.: Preface of the special issue Probing the limits of quantum mechanics: theory and experiment, vol. 2. Found. Phys. published online (2015). doi: 10.1007/s10701-015-9950-1 · Zbl 1321.00106
[8] D’Ariano, G.M., Khrennikov, A.: Preface of the special issue Quantum foundations: information approach. Philos. Trans. R. Soc. A 374, 20150244 (2016). doi:10.1098/rsta.2015.0244 · Zbl 1353.94006 · doi:10.1098/rsta.2015.0244
[9] Coecke, B., Khrennikov, A.: Preface of the special issue Quantum theory: from foundations to technologies. Int. J. Quantum Inf. 14(4), 1602001 (2016). doi:10.1142/S0219749916020019 · Zbl 1356.00031 · doi:10.1142/S0219749916020019
[10] Chiribella, G., Spekkens, R.W. (eds.): Quantum Theory: Informational Foundations and Foils, Fundamental Theories in Physics, vol. 181. Springer, Dordrecht (2016) · Zbl 1328.81012
[11] Zauner, G. Quantendesigns. Grundzüge einer nichtkommutativen Designtheorie. PhD thesis, University of Vienna, 1999. Published in English translation: Zauner, G. Quantum designs: foundations of a noncommutative design theory. Int. J. Quantum Inf. 9 (2011). 445-508 doi: 10.1142/S0219749911006776 http://www.gerhardzauner.at/qdmye.html · Zbl 1214.81062
[12] Renes, J.M., Blume-Kohout, R., Scott, A.J., Caves, C.M.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45, 2171-2180 (2004). doi:10.1063/1.1737053 · Zbl 1071.81015 · doi:10.1063/1.1737053
[13] Appleby, M., Fuchs, C.A., Stacey, B.C., Zhu, H.: Introducing the Qplex: a novel arena for quantum theory. forthcoming in Eur. Phys. J. D (2017). arXiv: 1612.03234 [quant-ph]
[14] Scott, A.J., Grassl, M.: Symmetric informationally complete positive-operator-valued measures: a new computer study. J. Math. Phys. 51, 042203 (2010). doi:10.1063/1.3374022 · Zbl 1310.81022 · doi:10.1063/1.3374022
[15] Scott, A.J.: SICs: Extending the list of solutions. (2017) arXiv: 1703.03993 [quant-ph]
[16] Fuchs, C.A., Hoang, M.C., Stacey, B.C.: The SIC question: history and state of play. (2016) arXiv: 1703.07901 [quant-ph]
[17] Appleby, M., Chien, T.Y., Flammia, S., Waldron, S.: Constructing exact symmetric informationally complete measurements from numerical solutions. (2017) arXiv: 1703.05981 [quant-ph] · Zbl 1397.81022
[18] Stacey, B.C.: Sporadic SICs and the normed division algebras. Found. Phys. (2017). doi:10.1007/s10701-017-0087-2 · Zbl 1382.81026
[19] Appleby, M., Flammia, S., McConnell, G., Yard, J.: SICs and algebraic number theory. Found. Phys. (2017). doi:10.1007/s10701-017-0090-7 · Zbl 1382.81023
[20] Appleby, M., Flammia, S., McConnell, G., Yard, J.: Generating ray class fields of real quadratic fields via complex equiangular lines. (2016) arXiv: 1604.06098 [math.NT] · Zbl 1442.11153
[21] Bengtsson, I.: The number behind the simplest SIC-POVM. Found. Phys. (2017). doi:10.1007/s10701-017-0078-3 · Zbl 1382.81024
[22] Hartnett, K.: A new path to equal-angle lines, Quanta Magazine (2017). https://www.quantamagazine.org/a-new-path-to-equal-angle-lines/
[23] Klarreich, E.: Sphere packing solved in higher dimensions, Quanta Magazine (2016). https://www.quantamagazine.org/20160330-sphere-packing-solved-in-higher-dimensions/ · Zbl 1071.81015
[24] Klarreich, E.: Landmark algorithm breaks 30-year impasse, Quanta Magazine (2015). https://www.quantamagazine.org/20151214-graph-isomorphism-algorithm/
[25] Klarreich, E.: A design dilemma solved, minus designs, Quanta Magazine (2015). https://www.quantamagazine.org/20150609-a-design-dilemma-solved-minus-designs/
[26] Zhu, H.: Quantum state estimation and symmetric informationally complete POMs. PhD thesis, National University of Singapore (2012)
[27] Tabia, G.N.M., Appleby, M.: Exploring the geometry of qutrit state space using symmetric informationally complete probabilities. Phys. Rev. A 88(1), 012131 (2013). doi:10.1103/PhysRevA.88.012131 · doi:10.1103/PhysRevA.88.012131
[28] Stacey, B.C.: SIC-POVMs and compatibility among quantum states. Mathematics 4(2), 36 (2016). doi:10.3390/math4020036 · Zbl 1360.81044 · doi:10.3390/math4020036
[29] DeBrota, J.B., Fuchs, C.A.: Negativity bounds for Weyl-Heisenberg quasiprobability representations. Found. Phys. 24, 1-22 (2017). doi:10.1007/s10701-017-0098-z · Zbl 1382.81025 · doi:10.1007/s10701-017-0098-z
[30] Zhu, H.: Quasiprobability representations of quantum mechanics with minimal negativity. Phys. Rev. Lett. 117(12), 120404 (2016). doi:10.1103/PhysRevLett.117.120404 · doi:10.1103/PhysRevLett.117.120404
[31] Fuchs, C.A., Mermin, N.D., Schack, R.: An introduction to QBism with an application to the locality of quantum mechanics. Am. J. Phys. 82(8), 749-754 (2014). doi:10.1119/1.4874855 · doi:10.1119/1.4874855
[32] Stacey, B.C.: Von Neumann was not a Quantum Bayesian. Philos. Trans. R. Soc. A 374, 20150235 (2016). doi:10.1098/rsta.2015.0235 · doi:10.1098/rsta.2015.0235
[33] Fuchs, C.A., Stacey, B.C.: QBism: Quantum theory as a hero’s handbook, Enrico Fermi Summer School lecture notes, (2016) arXiv: 1612.07308 [quant-ph] · Zbl 1071.81015
[34] Fuchs, C.A.: Notwithstanding Bohr, the reasons for QBism. (2017) arXiv: 1705.03483 [quant-ph]
[35] Bisio, A., D’Ariano, G.M., Perinotti, P.: Quantum walks, Weyl equation and the Lorentz group. Found. Phys. (2017). doi:10.1007/s10701-017-0086-3 · Zbl 1382.81008
[36] Khrennikov, A.: The present situation in quantum theory and its merging with general relativity. Found. Phys. (2017). doi:10.1007/s10701-017-0089-0 · Zbl 1382.81013
[37] Loubenets, E.R.: Bell’s nonlocality in a general nonsignaling case: Quantitatively and conceptually. Found. Phys. (2017). doi:10.1007/s10701-017-0077-4 · Zbl 1382.81034
[38] Plotnitsky, A.: On the character of quantum law: complementarity, entanglement, and information. Found. Phys. (2017). doi:10.1007/s10701-017-0101-8 · Zbl 1382.81014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.