×

Discrete set-valued continuity and interpolation. (English) Zbl 1382.68269

Hendriks, Cris L. Luengo (ed.) et al., Mathematical morphology and its applications to signal and image processing. 11th international symposium, ISMM 2013, Uppsala, Sweden, May 27–29, 2013. Proceedings. Berlin: Springer (ISBN 978-3-642-38293-2/pbk). Lecture Notes in Computer Science 7883, 37-48 (2013).
Summary: The main question of this paper is to retrieve some continuity properties on (discrete) T0-Alexandroff spaces. One possible application, which will guide us, is the construction of the so-called “tree of shapes” (intuitively, the tree of level lines). This tree, which should allow to process maxima and minima in the same way, faces quite a number of theoretical difficulties that we propose to solve using set-valued analysis in a purely discrete setting. We also propose a way to interpret any function defined on a grid as a “continuous” function thanks to an interpolation scheme. The continuity properties are essential to obtain a quasi-linear algorithm for computing the tree of shapes in any dimension, which is exposed in a companion paper [T. Géraud et al., Lect. Notes Comput. Sci. 7883, 98–110 (2013; Zbl 1382.68261)].
For the entire collection see [Zbl 1263.68019].

MSC:

68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
68U10 Computing methodologies for image processing

Keywords:

tree of shapes

Citations:

Zbl 1382.68261

References:

[1] Alexandroff, P., Diskrete Räume, Math. Sbornik, 2, 3, 501-518 (1937) · Zbl 0018.09105
[2] Alexandroff, P.: Combinatorial topology. Dover Publications (1947) · Zbl 0031.08204
[3] Arenas, F.: Alexandroff spaces. Acta Math. Univ. Comen. LXVIII(1), 17-25 (1999) · Zbl 0944.54018
[4] Aubin, J., Frankowska, H.: Set-valued analysis. Birkhauser (2008) · Zbl 1168.49014
[5] Bertrand, G., Couprie, M.: A model for digital topology. Discrete Geometry for Computer Imagery, 229-241 (1999) · Zbl 0935.68117
[6] Boxer, L., Digitally continuous functions, PRL, 15, 8, 833-839 (1994) · Zbl 0822.68119 · doi:10.1016/0167-8655(94)90012-4
[7] Caselles, V., Monasse, P.: Geometric description of topographic maps. Lecture Notes in Mathematics, vol. 1984. Springer (2010) · Zbl 1191.68759
[8] Escribano, C.; Giraldo, A.; Sastre, M. A., Digitally continuous multivalued functions, morphological operations and thinning algorithms, JMIV, 42, 1, 76-91 (2012) · Zbl 1255.68231 · doi:10.1007/s10851-011-0277-z
[9] Evako, A., Dimension on discrete spaces, International Journal of Theoretical Physics, 33, 1553-1568 (1996) · Zbl 0829.53055 · doi:10.1007/BF00670697
[10] Géraud, T.; Carlinet, E.; Crozet, S.; Najman, L.; Luengo Hendriks, C. L.; Borgefors, G.; Strand, R., A quasi-linear algorithm to compute the tree of shapes of nD images, ISMM 2013, 98-110 (2013), Heidelberg: Springer, Heidelberg · Zbl 1382.68261
[11] Gonzalez-Diaz, R.; Jimenez, M.-J.; Medrano, B.; Debled-Rennesson, I.; Domenjoud, E.; Kerautret, B.; Even, P., Well-composed cell complexes, Discrete Geometry for Computer Imagery, 153-162 (2011), Heidelberg: Springer, Heidelberg · Zbl 1272.68433 · doi:10.1007/978-3-642-19867-0_13
[12] Kovalevsky, W., A new concept for digital geometry, Shape in Pictures, NATO ASI Series F, 126, 37-51 (1994) · doi:10.1007/978-3-662-03039-4_4
[13] Latecki, L.; Eckhardt, U.; Rosenfeld, A., Well-composed sets, Computer Vision and Image Understanding, 61, 1, 70-83 (1995) · doi:10.1006/cviu.1995.1006
[14] Latecki, L., 3d well-composed pictures, CVGIP: Graphical Model and Image Processing, 59, 3, 164-172 (1997) · doi:10.1006/gmip.1997.0422
[15] Marchadier, J.; Arquès, D.; Michelin, S., Thinning grayscale well-composed images, PRL, 25, 5, 581-590 (2004) · doi:10.1016/j.patrec.2003.12.005
[16] Monasse, P.; Guichard, F., Fast computation of a contrast-invariant image representation, TIP, 9, 5, 860-872 (2000)
[17] Nakamura, A.; Klette, R.; Žunić, J., Magnification in digital topology, Combinatorial Image Analysis, 260-275 (2004), Heidelberg: Springer, Heidelberg · Zbl 1113.68598 · doi:10.1007/978-3-540-30503-3_20
[18] Ronse, C.: Regular open or closed sets. Tech. Rep. Working Document WD59, Philips Research Lab., Brussels (1990)
[19] Rosenfeld, A., “Continuous” functions on digital pictures, PRL, 4, 3, 177-184 (1986) · Zbl 0633.68122 · doi:10.1016/0167-8655(86)90017-6
[20] Siqueira, M.; Latecki, L. J.; Tustison, N.; Gallier, J.; Gee, J., Topological repairing of 3D digital images, JMIV, 30, 3, 249-274 (2008) · Zbl 1523.68162 · doi:10.1007/s10851-007-0054-1
[21] Stelldinger, P.; Latecki, L.; Siqueira, M., Topological equivalence between a 3d object and the reconstruction of its digital image, PAMI, 29, 1, 126-140 (2007) · doi:10.1109/TPAMI.2007.250604
[22] Tsaur, R.; Smyth, M. B.; Bertrand, G.; Imiya, A.; Klette, R., “Continuous” multifunctions in discrete spaces with applications to fixed point theory, Digital and Image Geometry, 75-88 (2002), Heidelberg: Springer, Heidelberg · Zbl 1052.68782 · doi:10.1007/3-540-45576-0_5
[23] Wang, Y.; Bhattacharya, P., Digital connectivity and extended well-composed sets for gray images, CVIU, 68, 3, 330-345 (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.