×

A cell filtration of mixed tensor space. (English) Zbl 1382.16010

Let \(n\) be a natural number, \(r, s\) and \(m\) non-negative integers and let \(R\) be a commutative ring. For \(x\in R\), the walled Brauer algebra \(B_{r, s}(x)\) is the subalgebra of the Brauer algebra \(B_{r+s}(x)\) spanned by certain diagrams, the walled Brauer diagrams. Let \(V\) be a free \(R\)-module of rank \(n\) and let \(V^\ast=\mathrm{Hom}_R(V, R)\). Then, the walled Brauer algebra for the parameter \(x=n\) acts on the mixed tensor space \(V^{\otimes r}\otimes V^{\ast\otimes s}\) and satisfies Schur-Weyl duality together with the action of the universal enveloping algebra \(U\) of the general linear algebra. This situation is very similar to (in fact a generalization of) the classical Schur-Weyl duality where both the group algebra \(R\mathfrak{S}_m\) of the symmetric group and \(U\) act on the ordinary tensor space \(V^{\otimes m}\). The group algebra of the symmetric group is a cellular algebra in the sense of J. J. Graham and G. I. Lehrer [Invent. Math. 123, No. 1, 1–34 (1996; Zbl 0853.20029)] with a cellular basis (the Murphy basis, see [G. E. Murphy, J. Algebra 173, No. 1, 97–121 (1995; Zbl 0829.20022)]) which has remarkable properties and one may ask, if the walled Brauer algebra has a cellular basis with similar properties.
The authors in the paper under review construct a cellular basis of the walled Brauer algebra which has similar properties as the Murphy basis of the group algebra of the symmetric group. In particular, the restriction of a cell module to a certain subalgebra can be easily described via this basis. Furthermore, the mixed tensor space possesses a filtration by cell modules – although not by cell modules of the walled Brauer algebra itself, but by cell modules of its image in the algebra of endomorphisms of mixed tensor space.
Reviewer: Wei Feng (Beijing)

MSC:

16G30 Representations of orders, lattices, algebras over commutative rings
16D20 Bimodules in associative algebras
20C08 Hecke algebras and their representations
17B37 Quantum groups (quantized enveloping algebras) and related deformations

References:

[1] Anderson, H.H., Stroppel, C., Tubbenhauer, D.: Cellular structures using \(U_q\)-tilting modules. Preprint available on arXiv:1503.00224 · Zbl 1425.17005
[2] Benkart, G., Chakrabarti, M., Halverson, T., Leduc, R., Lee, C., Stroomer, J.: Tensor product representations of general linear groups and their connections with Brauer algebras. J. Algebra 166(3), 529-567 (1994) · Zbl 0815.20028 · doi:10.1006/jabr.1994.1166
[3] Brauer, R.: On algebras which are connected with the semisimple continuous groups. Ann. Math. (2) 38, 857-872 (1937) · JFM 63.0873.02 · doi:10.2307/1968843
[4] Carter, R.W., Lusztig, G.: On the modular representations of the general linear and symmetric groups. Math. Z. 136, 193-242 (1974) · Zbl 0298.20009 · doi:10.1007/BF01214125
[5] Cox, A., De Visscher, M., Doty, S., Martin, P.: On the blocks of the walled Brauer algebra. J. Algebra 320, 169-212 (2008) · Zbl 1196.20004 · doi:10.1016/j.jalgebra.2008.01.026
[6] Dipper, R., Doty, S., Stoll, F.: The quantized walled Brauer algebra and mixed tensor space. Algebras Represent. Theory 17(2), 675-701 (2014) · Zbl 1368.17017 · doi:10.1007/s10468-013-9414-2
[7] Dipper, R., Doty, S., Stoll, F.: Quantized mixed tensor space and Schur Weyl duality. Algebra Number Theory 7(5), 1121-1146 (2013) · Zbl 1290.17012 · doi:10.2140/ant.2013.7.1121
[8] Enyang, J.: Cellular bases of the two-parameter version of the centraliser algebra for the mixed tensor representations of the quantum general linear group. Sūrikaisekikenkyūsho Kōkyūroku 1310, 134-153 (2003). Combinatorial representation theory and related topics (Japanese) (Kyoto, 2002) · Zbl 0681.20030
[9] Fulton, W., Harris, J.: Representation Theory: A First Course. Graduate Texts in Mathematics 129. Springer, New York (1991) · Zbl 0744.22001
[10] Goodman, F.M., Graber, J.: Cellularity and the Jones basic construction. Adv. Appl. Math. 46, 312-362 (2011) · Zbl 1266.20005 · doi:10.1016/j.aam.2010.10.003
[11] Goodman, F.M., Graber, J.: On cellular algebras with Jucys-Murphy elements. J. Algebra 330, 147-176 (2011) · Zbl 1251.20007 · doi:10.1016/j.jalgebra.2011.01.002
[12] Graham, J.J., Lehrer, G.I.: Cellular algebras. Invent. Math. 123(1), 1-34 (1996) · Zbl 0853.20029 · doi:10.1007/BF01232365
[13] Green, J.A.: Polynomial representations of \({\rm GL}_n\). Lecture Notes in Mathematics 830, augmented, With an appendix on Schensted correspondence and Littelmann paths by K. Erdmann, Green and M. Schocker, Springer, Berlin (2007) · Zbl 1108.20044
[14] Green, R.M., Martin, P.P.: Constructing cell data for diagram algebras. J. Pure Appl. Algebra 209, 551-569 (2007) · Zbl 1137.16023 · doi:10.1016/j.jpaa.2006.07.016
[15] Härterich, M.: Murphy bases of generalized Temperley-Lieb algebras. Arch. Math. (Basel) 72(5), 337-345 (1999) · Zbl 0945.20006 · doi:10.1007/s000130050341
[16] Hatt, T.: On the centralizer algebras of tensor products of irreducible Weyl modules. thesis (2014). http://elib.uni-stuttgart.de/opus/volltexte/2014/8869/
[17] Henke, A., Paget, R.: Brauer algebras with parameter \(n=2\) acting on tensor space. Algebras Represent. Theory 11(6), 545-575 (2008) · Zbl 1185.20048 · doi:10.1007/s10468-008-9092-7
[18] James, G.D.: The Representation Theory of the Symmetric Groups. Lecture Notes in Mathematics 682, Springer, Berlin (1978) · Zbl 0393.20009
[19] Koike, K.: On the decomposition of tensor products of the representations of the classical groups: by means of the universal characters. Adv. Math. 74(1), 57-86 (1989) · Zbl 0681.20030 · doi:10.1016/0001-8708(89)90004-2
[20] König, S., Xi, C.: On the structure of cellular algebras. In: Algebras and modules, II (Geiranger, 1996), volume 24 of CMS Conference Proceedings. American Mathematical Society, Providence, RI, pp. 365-386 (1998) · Zbl 0926.16016
[21] Littlewood, D.E., Richardson, A.R.: Group Characters and Algebra. Philos. Trans. R. Soc. Lond. Ser. A 233, 99-141 (1934) · JFM 60.0896.01 · doi:10.1098/rsta.1934.0015
[22] Lusztig, G.: Introduction to Quantum Groups. Progress in Mathematics 110. Birkhäuser Boston Inc, Boston, MA (1993) · Zbl 0788.17010
[23] Mathas, A.: Iwahori-Hecke Algebras and Schur Algebras of the Symmetric Group. University Lecture Series 15. American Mathematical Society, Providence, RI (1999) · Zbl 0940.20018
[24] Murphy, G.E.: The representations of Hecke algebras of type \(A_n\). J. Algebra 173(1), 97-121 (1995) · Zbl 0829.20022 · doi:10.1006/jabr.1995.1079
[25] Schur, I.: Über die rationalen Darstellungen der allgemeinen linearen Gruppe (1927). Reprinted in I. Schur, Gesammelte Abhandlungen III. Springer, Berlin, pp. 68-85 (1973) · JFM 63.0873.02
[26] Stembridge, J.R.: Rational tableaux and the tensor algebra of \({\rm gl}_n\). J. Combin. Theory Ser. A 46(1), 79-120 (1987) · Zbl 0626.20030 · doi:10.1016/0097-3165(87)90077-X
[27] Turaev, V.G.: Operator invariants of tangles and \(R\)-matrices (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 53(5), 1073-1107 (1989)
[28] Turaev, V.G.: Category of oriented tangles and its representations. Funct. Anal. Appl. 23(3), 254-255 (1989) · Zbl 0705.57008 · doi:10.1007/BF01079545
[29] Werth, M.: Murphy bases for endomorphism rings of tensor space. thesis (2015)
[30] Westbury, B.W.: Invariant tensors and cellular categories. J. Algebra 321(11), 3563-3567 (2009) · Zbl 1242.16016 · doi:10.1016/j.jalgebra.2008.07.004
[31] Weyl, H.: The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, NJ (1939) · Zbl 0020.20601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.