×

Brauer algebras with parameter \(n=2\) acting on tensor space. (English) Zbl 1185.20048

Let \(E\) be an \(n\)-dimensional vector space over a field \(k\) of prime characteristic \(p\). In this paper the authors study the \(r\)-tensor space \(E^{\otimes r}\) as a module for the Brauer algebra \(B_k(r,\delta)\) in the special case where \(\delta=2=n\). They give a decomposition of \(E^{\otimes r}\) into a direct sum of some submodules and analyse the structure of these submodules in the case \(p\neq 2\). It turns out that the tensor space still affords Schur-Weyl duality. But it is not filtered by cell modules and thus not equal to a direct sum of Young modules as defined by R. Hartmann and R. Paget [Math. Z. 254, No. 2, 333-357 (2006; Zbl 1116.16009)].
Reviewer: Hu Jun (Beijing)

MSC:

20G05 Representation theory for linear algebraic groups
05E10 Combinatorial aspects of representation theory
16G10 Representations of associative Artinian rings

Citations:

Zbl 1116.16009
Full Text: DOI

References:

[1] Barcelo, H., Ram, A.: Combinatorial representation theory. In: New Perspectives in Algebraic Combinatorics, pp. 23–90. Berkeley, CA (1996–97). Math. Sci. Res. Inst. Publ., vol. 38, pp. 23–90. Cambridge University Press (1999) · Zbl 0939.05083
[2] Brauer, R.: On algebras which are connected with the semisimple continuous groups. Ann. of Math. 38, 854–872 (1937) · JFM 63.0873.02 · doi:10.2307/1968843
[3] Dipper, R., Doty, S., Hu, J.: Brauer’s centralizer algebras, symplectic Schur algebras and Schur–Weyl duality. Trans. Amer. Math. Soc. 360(1), 189–213 (2008) · Zbl 1157.16004 · doi:10.1090/S0002-9947-07-04179-7
[4] Graham, J.J., Lehrer, G.I.: Cellular algebras. Invent. Math. 123(1), 1–34 (1996) · Zbl 0853.20029 · doi:10.1007/BF01232365
[5] Hartmann, R., Henke, A., Koenig, S., Paget, R.: Cohomological stratification of diagram algebras. (2006, preprint) · Zbl 1198.16010
[6] Hartmann, R., Paget, R.: Young modules and filtration multiplicities for Brauer algebras. Math. Z. 254, 333–357 (2006) · Zbl 1116.16009 · doi:10.1007/s00209-006-0950-x
[7] James, G.D.: On the decomposition matrices of the symmetric groups, III. J. Algebra 71(1), 115–122 (1981) · Zbl 0465.20010 · doi:10.1016/0021-8693(81)90108-3
[8] James, G.D.: On the decomposition matrices of the GL n for n 0. Proc. London Math. Soc. (3) 60(2), 225–265 (1990) · Zbl 0760.20003 · doi:10.1112/plms/s3-60.2.225
[9] James, G.D.: The representation theory of the symmetric group. Lecture Notes in Mathematics, vol. 682. Springer, Berlin (1978) · Zbl 0393.20009
[10] James, G.D., Kerber, A.: The representation theory of the symmetric group. Encyclopedia of mathematics and its applications, vol. 16. Addison-Wesley (1981) · Zbl 0491.20010
[11] Kerov, S.V.: Realizations of representations of the Brauer semigroup. J. Soviet Math. 47, 2503–2507 (1989) · Zbl 0712.20031 · doi:10.1007/BF01840432
[12] Kleshchev, A.S.: Branching rules for modular representations of symmetric groups III: some corollaries and a problem of Mullineux. J. London Math. Soc. 54(2), 25–38 (1996) · Zbl 0854.20014
[13] Koenig, S., Xi, C.C.: Cellular algebras: inflations and Morita equivalences. J. London Math. Soc. 60(2), 700–722 (1999) · Zbl 0952.16014 · doi:10.1112/S0024610799008212
[14] Koenig, S., Xi, C.C.: A characteristic free approach to Brauer algebras. Trans. Amer. Math. Soc. 353, 1489–1505 (2001) · Zbl 0996.16009 · doi:10.1090/S0002-9947-00-02724-0
[15] Liu, Q.: Schur algebras of classical groups II. (2006, preprint) · Zbl 1189.20041
[16] Ringe, M.: The C MeatAxe, Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule. Aachen, Germany (1998)
[17] Schönert, M., et al.: GAP3–Groups, Algorithms, and Programming. Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule. Aachen, Germany (1997)
[18] Schur, I.: Ueber die rationalen Darstellungen der allgemeinen linearen Gruppe. Sitzungsberichte der Koeniglich Preussischen Akademie der Wissenschaften zu Berlin, pp. 58–75 (1927). Reprinted In: Gesammelte Abhandlungen, Band III, Herausgegeben von Alfred Brauer und Hans Rohrbach, pp. 68–85. Springer Verlag (1973) · JFM 53.0108.05
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.