×

The MV formalism for \({\mathrm{IBL}}_\infty \)- and \({\mathrm{BV}}_\infty \)-algebras. (English) Zbl 1382.16007

Summary: We develop a new formalism for the quantum master equation \(\Delta e^{S/\hslash } = 0\) and the category of \(\mathrm{IBL}_\infty \)-algebras and simplify some homotopical algebra arising in the context of oriented surfaces with boundary. We introduce and study a category of MV-algebras, which, on the one hand, contains such important categories as those of \(\mathrm{IBL}_\infty \)-algebras and \(\mathrm{L}_\infty \)-algebras and, on the other hand, is homotopically trivial, in particular allowing for a simple solution of the quantum master equation. We also present geometric interpretation of our results.

MSC:

16E45 Differential graded algebras and applications (associative algebraic aspects)
18G55 Nonabelian homotopical algebra (MSC2010)
58A50 Supermanifolds and graded manifolds

References:

[1] Bessis, D., Itzykson, C., Zuber, J.B.: Quantum field theory techniques in graphical enumeration. Adv. Appl. Math. 1(2), 109-157 (1980) · Zbl 0453.05035 · doi:10.1016/0196-8858(80)90008-1
[2] Bashkirov, D., Voronov, A.A.: The BV formalism for \[{{\rm L}}_\infty\] L∞-algebras. J. Homotopy Relat. Struct. (2017). Preprint IHES/M/14/36. arXiv:1410.6432 [math.QA] · Zbl 1371.18015
[3] Braun, Ch., Lazarev, A.: Homotopy BV algebras in Poisson geometry. Trans. Moscow Math. Soc. 74, 217-227 (2013) · Zbl 1306.53068
[4] Campos, R., Merkulov, S., Willwacher, T.: The Frobenius properad is Koszul. Duke Math. J. 165(15), 2921-2989 (2016) · Zbl 1360.18014
[5] Cieliebak, K., Fukaya, K., Latschev, J.: Homological algebra related to surfaces with boundaries. Preprint arXiv:1508.02741 [math.QA] (2015) · Zbl 1468.18022
[6] Cieliebak, K., Latschev, J.: The role of string topology in symplectic field theory. New Perspectives and Challenges in Symplectic Field Theory, Volume 49 of CRM Proceedings of Lecture Notes, pp. 113-146. American Mathematical Society, Providence (2009) · Zbl 1214.53067
[7] Drummond-Cole, G.C., Terilla, J., Tradler, T.: Algebras over \[\Omega (\text{ co } {Frob})\] Ω(coFrob). J. Homotopy Relat. Struct. 5(1), 15-36 (2010) · Zbl 1280.18009
[8] Iacono, D.: Deformations and obstructions of pairs (X,D). Preprint arXiv:1302.1149 [math.AG] (2013) · Zbl 1349.14041
[9] Kassel, Ch.: Quantum groups. Graduate Texts in Mathematics, vol. 155. Springer, New York (1995) · Zbl 1113.17304
[10] Katzarkov, L., Kontsevich, M., Pantev, T.: Hodge theoretic aspects of mirror symmetry. In: From Hodge Theory to Integrability and TQFT tt*-Geometry, Volume 78 of Proceedings of the Symposium in Pure Mathematics, pp 87-174. Americal Mathematics Society, Providence (2008) · Zbl 1206.14009
[11] Kravchenko, O.: Deformations of Batalin-Vilkovisky algebras. In; Poisson Geometry (Warsaw, 1998), Volume 51 of Banach Center Publ., pp. 131-139. Polish Acad. Sci., Warsaw (2000) · Zbl 1015.17029
[12] Lada, T., Markl, M.: Strongly homotopy Lie algebras. Comm. Algebra 23(6), 2147-2161 (1995) · Zbl 0999.17019 · doi:10.1080/00927879508825335
[13] Losev, A.: From Berezin integral to Batalin-Vilkovisky formalism: a mathematical physicist’s point of view. In: Shifman, M. (ed.) Felix Berezin. Life and Death of the Mastermind of Supermathematics, pp. 3-30. World Scientific Publishing Co. Pte. Ltd., Hackensack (2007) · Zbl 1155.81306
[14] Markl, M.: Deformation Theory of Algebras and Their Diagrams, Volume 116 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington (2012) · Zbl 1267.16029
[15] Markl, M.: On the origin of higher braces and higher-order derivations. J. Homotopy Relat. Struct. 10(3):637-667 (2015) · Zbl 1330.13032
[16] Markl, M., Remm, E.: Algebras with one operation including Poisson and other Lie-admissible algebras. J. Algebra 299, 171-189 (2006) · Zbl 1101.18004 · doi:10.1016/j.jalgebra.2005.09.018
[17] Münster, K., Sachs, I.: Quantum open-closed homotopy algebra and string field theory. Comm. Math. Phys. 321(3), 769-801 (2013) · Zbl 1270.81185 · doi:10.1007/s00220-012-1654-1
[18] Markl, M., Shnider, S., Stasheff, J.D.: Operads in Algebra, Topology and Physics, volume 96 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (2002) · Zbl 1017.18001
[19] Terilla, J.: Quantizing deformation theory. In: Deformation Spaces, Volume E40 of Aspects Math., pp. 135-141. Vieweg + Teubner, Wiesbaden (2010) · Zbl 1206.14013
[20] Terilla, J.: Smoothness theorem for differential BV algebras. J. Topol. 1(3), 693-702 (2008) · Zbl 1153.14005 · doi:10.1112/jtopol/jtn019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.