×

Homotopy BV algebras in Poisson geometry. (English) Zbl 1306.53068

Trans. Mosc. Math. Soc. 2013, 217-227 (2013) and Tr. Mosk. Mat. O.-va 74, No. 2, 265-277 (2013).
A Batalin-Vilkovisky algebra is a graded commutative algebra supplied with an odd differential operator of order 2 and square zero. In this paper, the authors study the degeneration property for such algebras. It is proved that the underlying algebras are homotopy abelian. The proof is based on a generalization of a well-known identity for ordinary BV algebras. As an application, the authors show that the higher Koszul brackets on the cohomology of a manifold supplied with a generalized Poisson structure all vanish.

MSC:

53D17 Poisson manifolds; Poisson groupoids and algebroids
16E45 Differential graded algebras and applications (associative algebraic aspects)

References:

[1] Sergey Barannikov and Maxim Kontsevich, Frobenius manifolds and formality of Lie algebras of polyvector fields, Internat. Math. Res. Notices 4 (1998), 201 – 215. · Zbl 0914.58004 · doi:10.1155/S1073792898000166
[2] Bruce A.J., On higher Poisson and Koszul-Schouten brackets. arXiv:0910.1992.
[3] Joseph Chuang and Andrey Lazarev, \?-infinity maps and twistings, Homology Homotopy Appl. 13 (2011), no. 2, 175 – 195. · Zbl 1254.18008 · doi:10.4310/HHA.2011.v13.n2.a12
[4] Dotsenko V., Shadrin S., Vallette B., De Rham cohomology and homotopy Frobenius manifolds. arXiv:1203.5077. · Zbl 1317.58003
[5] Marisa Fernández, Raúl Ibáñez, and Manuel de León, The canonical spectral sequences for Poisson manifolds, Israel J. Math. 106 (1998), 133 – 155. · Zbl 0916.58007 · doi:10.1007/BF02773464
[6] Domenico Fiorenza and Marco Manetti, Formality of Koszul brackets and deformations of holomorphic Poisson manifolds, Homology Homotopy Appl. 14 (2012), no. 2, 63 – 75. · Zbl 1267.18014 · doi:10.4310/HHA.2012.v14.n2.a4
[7] Imma Gálvez-Carrillo, Andrew Tonks, and Bruno Vallette, Homotopy Batalin-Vilkovisky algebras, J. Noncommut. Geom. 6 (2012), no. 3, 539 – 602. · Zbl 1258.18005 · doi:10.4171/JNCG/99
[8] L. Katzarkov, M. Kontsevich, and T. Pantev, Hodge theoretic aspects of mirror symmetry, From Hodge theory to integrability and TQFT tt*-geometry, Proc. Sympos. Pure Math., vol. 78, Amer. Math. Soc., Providence, RI, 2008, pp. 87 – 174. · Zbl 1206.14009 · doi:10.1090/pspum/078/2483750
[9] Maxim Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), no. 3, 157 – 216. · Zbl 1058.53065 · doi:10.1023/B:MATH.0000027508.00421.bf
[10] Olga Kravchenko, Deformations of Batalin-Vilkovisky algebras, Poisson geometry (Warsaw, 1998) Banach Center Publ., vol. 51, Polish Acad. Sci. Inst. Math., Warsaw, 2000, pp. 131 – 139. · Zbl 1015.17029
[11] H. M. Khudaverdian and Th. Th. Voronov, Higher Poisson brackets and differential forms, Geometric methods in physics, AIP Conf. Proc., vol. 1079, Amer. Inst. Phys., Melville, NY, 2008, pp. 203 – 215. · Zbl 1166.70011
[12] Jean-Louis Loday, Cyclic homology, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1992. Appendix E by María O. Ronco. · Zbl 0780.18009
[13] S. A. Merkulov, Formality of canonical symplectic complexes and Frobenius manifolds, Internat. Math. Res. Notices 14 (1998), 727 – 733. · Zbl 0931.58002 · doi:10.1155/S1073792898000439
[14] G. Sharygin and D. Talalaev, On the Lie-formality of Poisson manifolds, J. K-Theory 2 (2008), no. 2, Special issue in memory of Yurii Petrovich Solovyev., 361 – 384. · Zbl 1149.17013 · doi:10.1017/is008001011jkt030
[15] John Terilla, Smoothness theorem for differential BV algebras, J. Topol. 1 (2008), no. 3, 693 – 702. · Zbl 1153.14005 · doi:10.1112/jtopol/jtn019
[16] Theodore Voronov, Higher derived brackets and homotopy algebras, J. Pure Appl. Algebra 202 (2005), no. 1-3, 133 – 153. · Zbl 1086.17012 · doi:10.1016/j.jpaa.2005.01.010
[17] Theodore Th. Voronov, Higher derived brackets for arbitrary derivations, Travaux mathématiques. Fasc. XVI, Trav. Math., vol. 16, Univ. Luxemb., Luxembourg, 2005, pp. 163 – 186. · Zbl 1136.17014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.