×

Fibrin polymerization as a phase transition wave: a mathematical model. (English. Russian original) Zbl 1381.92027

Comput. Math. Math. Phys. 56, No. 6, 1118-1127 (2016); translation from Zh. Vychisl. Mat. Mat. Fiz. 56, No. 6, 1138-1148 (2016).
Summary: A mathematical model of fibrin polymerization is described. The problem of the propagation of phase transition wave is reduced to a nonlinear Stefan problem. A one-dimensional discontinuity fitting difference scheme is described, and the results of one-dimensional computations are presented.

MSC:

92C40 Biochemistry, molecular biology
82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics
82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Belotserkovskii, O. M., Solution of complex problems on supercomputers: Experience and trends, 265-286 (2005), Moscow
[2] O. M. Belotserkovskii, Numerical Simulation in Mechanics of Continuous Media (Nauka, Moscow, 1984) [in Russian].
[3] M. Khanin and V. Semenov, “A mathematical model of the kinetics of blood coagulation,” J. Theor. Biol. 136, 127-134 (1989). · doi:10.1016/S0022-5193(89)80220-6
[4] F. I. Ataullakhanov and G. T. Guriya, “Spatial aspects of blood coagulation dynamics: I. Hypothesis,” Biofiz. 39 (1), 89-96 (1994).
[5] F. I. Ataullakhanov, G. T. Guriya, and A. Yu. Safroshkina, “Spatial aspects of blood coagulation dynamics. II. Phenomenological model,” Biofiz. 39 (1), 97-104 (1994).
[6] Computer Models and Advances in Medicine, Ed. by O. M. Belotserkovskii and A. S. Kholodov (Nauka, Moscow, 2001) [in Russian].
[7] Computer and Brain: New Technologies, Ed. by O. M. Belotserkovskii (Nauka, Moscow, 2005) [in Russian]. · Zbl 1078.92028
[8] Medicine in the Mirror of Information Science Ed. by O. M. Belotserkovskii and A. S. Kholodov (Nauka, Moscow, 2008) [in Russian]. · Zbl 1027.92011
[9] V. I. Zarnitsina, F. I. Ataullakhanov, A. I. Lobanov, and O. L. Morozova, “Dynamics of spatially nonuniform patterning in the model of blood coagulation,” Chaos 11 (1), 57-70 (2001). · Zbl 0991.92006 · doi:10.1063/1.1345728
[10] A. I. Lobanov, T. K. Starozhilova, V. I. Zarnitsina, and F. I. Ataullakhanov, “Comparison of two mathematical models for the description of the spatial dynamics of blood coagulation,” Mat. Model. 15 (1), 14 (2003). · Zbl 1027.92011
[11] F. I. Ataullakhanov, V. I. Zarnitsina, A. Yu. Kondratovich, et al., “A special class of autowaves—autowaves with a stop—determines the spatial dynamics of blood coagulation,” Usp. Fiz. Nauk 172, 671-690 (2002). · doi:10.3367/UFNr.0172.200206c.0671
[12] F. I. Ataullakhanov, E. S. Lobanova, O. L. Morozova, et al., “Complex regimes of propagation of excitation and self-organization in a model of blood coagulation, Usp. Fiz. Nauk <Emphasis Type=”Bold”>177, 87-104 (2007). · doi:10.3367/UFNr.0177.200701d.0087
[13] M. A. Panteleev, A. N. Balandina, E. N. Lipets, et al., “Task-oriented modular decomposition of biological networks: Trigger mechanism in blood coagulation,” Biophys. J. 98 (9), 1751-1761 (2010). · doi:10.1016/j.bpj.2010.01.027
[14] M. Anand, “A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood,” J. Theor. Med. 5, 183-218 (2003). · Zbl 1078.92017 · doi:10.1080/10273660412331317415
[15] A. S. Rukhlenko, K. E. Zlobina, and G. T. Guriya, “Hydrodynamic activation of blood coagulation in stenotic vessels: A theoretical analysis,” Comput. Issled. Model. 4 (1), 155-183 (2012).
[16] A. I. Lobanov, A. V. Nikolaev, and T. K. Starozhilova, “Mathematical model of fibrin polymerization,” Math. Model. Nat. Phenom. 6 (7), 55-69 (2001). · doi:10.1051/mmnp/20116705
[17] O. M. Belotserkovskii, “Mathematical modeling for supercomputers: Background and tendencies,” Comput. Math. Math. Phys. 40, 1173-1187 (2000). · Zbl 0996.68239
[18] M. A. Panteleev, M. V. Ovanesov, et al., “Spatial propagation and localization of blood coagulation are regulated by intrinsic and protein C pathways, respectively,” Biophys J. 90 (5), 1489-1500 (2006). · doi:10.1529/biophysj.105.069062
[19] E. A. Ermakova, M. A. Panteleev, and E. E. Shnol, “Blood coagulation and propagation of autowaves in flow,” Pathophysiol. Haemost. Thromb. 34 (2-3), 135-142 (2005).
[20] J. P. Collet, D. Park, C. Lesty, J. Soria, C. Soria, G. Montalescot, and J. W. Weisel, “Influence of fibrin network conformation and fibrin fiber diameter on fibrinolysis speed: Dynamic and structural approaches by confocal microscopy,” Arterioscler. Thromb. Vasc. Biol. 20 (5), 1354-1361 (2000). · doi:10.1161/01.ATV.20.5.1354
[21] A. I. Lobanov, T. K. Starozhilova, and G. T. Guriya, “Numerical investigation of structure formation in blood coagulation,” Mat. Model. 9 (8), 83-95 (1997). · Zbl 1071.92500
[22] G. T. Guriya, T. K. Starozhilova, and A. I. Lobanov, “Formation of axially symmetric structures in excitable media with active restoration,” Biofiz. 43, 526-534 (1998).
[23] A. A. Samarskii, Theory of Finite Difference Schemes (Nauka, Moscow, 1989; Marcel Dekker, New York, 2001).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.